This documentation page refers to a previous release of DIALS (1.14).
Click here to go to the corresponding page for the latest version of DIALS

dials.predict

Introduction

This program takes a set of experiments and predicts the reflections. The reflections are then saved to file.

Examples:

dials.predict experiments.json

dials.predict experiments.json force_static=True

dials.predict experiments.json d_min=2.0

Basic parameters

output = predicted.pickle
force_static = False
ignore_shadows = True
buffer_size = 0
d_min = None
profile {
  algorithm = *gaussian_rs
  gaussian_rs {
    scan_varying = False
    min_spots {
      overall = 50
      per_degree = 20
    }
    sigma_m_algorithm = basic *extended
    parameters {
      sigma_b = None
      sigma_m = None
    }
    filter {
      min_zeta = 0.05
    }
    fitting {
      scan_step = 5
      grid_size = 5
      threshold = 0.02
      grid_method = single *regular_grid circular_grid spherical_grid
      fit_method = *reciprocal_space detector_space
      detector_space {
        deconvolution = False
      }
    }
  }
}

Full parameter definitions

output = predicted.pickle
  .help = "The filename for the predicted reflections"
  .type = str
force_static = False
  .help = "For a scan varying model, force static prediction"
  .type = bool
ignore_shadows = True
  .help = "Ignore dynamic shadowing"
  .type = bool
buffer_size = 0
  .help = "Calculate predictions within a buffer zone of n images either  side"
          "of the scan"
  .type = int(allow_none=True)
d_min = None
  .help = "Minimum d-spacing of predicted reflections"
  .type = float(allow_none=True)
profile
  .help = "
         T h e   i n t e r f a c e   d e f i n i t i o n   f o r  "
          "a   p r o f i l e   m o d e l . 
 
        "
{
  algorithm = *gaussian_rs
    .help = "The choice of algorithm"
    .type = choice
  gaussian_rs
    .help = "An extension class implementing a reciprocal space gaussian"
            "profile model."
  {
    scan_varying = False
      .help = "Calculate a scan varying model"
      .type = bool
    min_spots
      .help = "if (total_reflections > overall or reflections_per_degree >"
              "per_degree) then do the profile modelling."
    {
      overall = 50
        .help = "The minimum number of spots needed to do the profile"
                "modelling"
        .type = int(value_min=0, allow_none=True)
      per_degree = 20
        .help = "The minimum number of spots needed to do the profile"
                "modelling"
        .type = int(value_min=0, allow_none=True)
    }
    sigma_m_algorithm = basic *extended
      .help = "The algorithm to compute mosaicity"
      .type = choice
    parameters {
      sigma_b = None
        .help = "Override the sigma_b value (degrees)"
        .type = float(value_min=0, allow_none=True)
      sigma_m = None
        .help = "Override the sigma_m value (degrees)"
        .type = float(value_min=0, allow_none=True)
    }
    filter {
      min_zeta = 0.05
        .help = "Filter reflections by min zeta"
        .type = float(allow_none=True)
    }
    fitting {
      scan_step = 5
        .help = "Space between profiles in degrees"
        .type = float(allow_none=True)
      grid_size = 5
        .help = "The size of the profile grid."
        .type = int(allow_none=True)
      threshold = 0.02
        .help = "The threshold to use in reference profile"
        .type = float(allow_none=True)
      grid_method = single *regular_grid circular_grid spherical_grid
        .help = "Select the profile grid method"
        .type = choice
      fit_method = *reciprocal_space detector_space
        .help = "The fitting method"
        .type = choice
      detector_space {
        deconvolution = False
          .help = "Do deconvolution in detector space"
          .type = bool
      }
    }
  }
}