This documentation page refers to a previous release of DIALS (1.14).
Click here to go to the corresponding page for the latest version of DIALS

Source code for dials.algorithms.scaling.outlier_rejection

"""
Definitions of outlier rejection algorithms.

These algorithms use the Ih_table datastructures to perform calculations
in groups of symmetry equivalent reflections. Two functions are provided,
reject_outliers, to reject outlier and set flags given a reflection table
and experiment object, and determine_outlier_index_arrays, which takes an
Ih_table and returns flex.size_t index arrays of the outlier positions.
"""
from __future__ import division
from __future__ import absolute_import, print_function
import abc
import logging
from dials.util import Sorry
from scitbx.array_family import flex
from dials.algorithms.scaling.Ih_table import IhTable
from dials_scaling_ext import determine_outlier_indices

logger = logging.getLogger("dials")


[docs]def reject_outliers(reflection_table, experiment, method="standard", zmax=6.0): """ Run an outlier algorithm on symmetry-equivalent intensities. This method runs an intensity-based outlier rejection algorithm, comparing the deviations from the weighted mean in groups of symmetry equivalent reflections. The outliers are determined and the outlier_in_scaling flag is set in the reflection table. The values intensity and variance must be set in the reflection table; these should be corrected but unscaled values, as an inverse_scale_factor will be applied during outlier rejection if this is present in the reflection table. The reflection table should also be prefiltered (e.g. not-integrated reflections should not be present) as no further filtering is done on the input table. Args: reflection_table: A reflection table. experiment: A single experiment object. method (str): Name (alias) of outlier rejection algorithm to use. zmax (float): Normalised deviation threshold for classifying an outlier. Returns: reflection_table: The input table with the outlier_in_scaling flag set. Raises: Sorry: if the reflection table does not contain intensity and variance. """ if not "intensity" in reflection_table or not "variance" in reflection_table: raise Sorry( """The reflection table does not contain columns with the names 'intensity' and 'variance'""" ) if not "inverse_scale_factor" in reflection_table: reflection_table["inverse_scale_factor"] = flex.double( reflection_table.size(), 1.0 ) Ih_table = IhTable( [reflection_table], experiment.crystal.get_space_group(), nblocks=1 ) outlier_indices = determine_outlier_index_arrays( Ih_table, method=method, zmax=zmax )[0] # Unset any existing outlier flags before setting the new ones reflection_table.unset_flags( reflection_table.get_flags(reflection_table.flags.outlier_in_scaling), reflection_table.flags.outlier_in_scaling, ) reflection_table.set_flags( outlier_indices, reflection_table.flags.outlier_in_scaling ) return reflection_table
[docs]def determine_outlier_index_arrays(Ih_table, method="standard", zmax=6.0, target=None): """ Run an outlier algorithm and return the outlier indices. Args: Ih_table: A dials.algorithms.scaling.Ih_table.IhTable. method (str): Name (alias) of outlier rejection algorithm to use. If method=target, then the optional argument target must also be specified. Implemented methods; standard, simple, target. zmax (float): Normalised deviation threshold for classifying an outlier. target (Optional[IhTable]): An IhTable to use to obtain target Ih for outlier rejectiob, if method=target. Returns: outlier_index_arrays (list): A list of flex.size_t arrays, with one array per dataset that was used to create the Ih_table. Importantly, the indices are the indices of the reflections in the initial reflection table used to create the Ih_table, not the indices of the data in the Ih_table. Raises: Sorry: if an invalid choice is made for the method. """ if method == "standard": outlier_index_arrays = NormDevOutlierRejection( Ih_table, zmax ).final_outlier_arrays elif method == "simple": outlier_index_arrays = SimpleNormDevOutlierRejection( Ih_table, zmax ).final_outlier_arrays elif method == "target": assert target is not None outlier_index_arrays = TargetedOutlierRejection( Ih_table, zmax, target ).final_outlier_arrays elif method is None: return [flex.size_t([]) for _ in range(Ih_table.n_datasets)] else: raise Sorry("Invalid choice of outlier rejection method.") if Ih_table.n_datasets > 1: msg = ( "Combined outlier rejection has been performed across multiple datasets, \n" ) else: msg = "A round of outlier rejection has been performed, \n" n_outliers = sum([len(i) for i in outlier_index_arrays]) msg += "{0} outliers have been identified. \n".format(n_outliers) logger.info(msg) return outlier_index_arrays
[docs]class OutlierRejectionBase(object): """ Base class for outlier rejection algorithms using an IhTable datastructure. Subclasses must implement the _do_outlier_rejection method, which must add the indices of outliers to the _outlier_indices attribute. The algorithms are run upon initialisation and result in the population of the :obj:`final_outlier_arrays`. Attributes: final_outlier_arrays (:obj:`list`): A list of flex.size_t arrays of outlier indices w.r.t. the order of the initial reflection tables used to create the Ih_table. """ __metaclass__ = abc.ABCMeta def __init__(self, Ih_table, zmax): """Set up and run the outlier rejection algorithm.""" assert ( Ih_table.n_work_blocks == 1 ), """ Outlier rejection algorithms require an Ih_table with nblocks = 1""" # Note: could be possible to code for nblocks > 1 self._Ih_table_block = Ih_table.blocked_data_list[0] self._n_datasets = Ih_table.n_datasets self._block_selections = Ih_table.blocked_selection_list[0] self._ids = self._Ih_table_block.Ih_table["dataset_id"] self._zmax = zmax self._outlier_indices = flex.size_t([]) self._do_outlier_rejection() self.final_outlier_arrays = self._determine_outlier_indices() def _determine_outlier_indices(self): """ Determine outlier indices with respect to the input reflection tables. Transform the outlier indices w.r.t the Ih_table, determined during the algorithm, to outlier indices w.r.t the initial reflection tables used to create the Ih_table, separated by reflection table. Returns: final_outlier_arrays (:obj:`list`): A list of flex.size_t arrays of outlier indices w.r.t. the order of the data in the initial reflection tables used to create the Ih_table. """ if self._n_datasets == 1: return [self._block_selections[0].select(self._outlier_indices)] final_outlier_arrays = [] ids = self._ids.select(self._outlier_indices) offset = 0 for i in range(self._n_datasets): outlier_array_i = self._outlier_indices.select(ids == i) - offset final_outlier_arrays.append( self._block_selections[i].select(outlier_array_i) ) offset += self._block_selections[i].size() return final_outlier_arrays @abc.abstractmethod def _do_outlier_rejection(self): """Add indices (w.r.t. the Ih_table data) to self._outlier_indices."""
[docs]class TargetedOutlierRejection(OutlierRejectionBase): """Implementation of an outlier rejection algorithm against a target. This algorithm requires a target Ih_table in addition to an Ih_table for the dataset under investigation. Normalised deviations are calculated from the intensity values in the target table. """ def __init__(self, Ih_table, zmax, target): """Set a target Ih_table and run the outlier rejection.""" assert ( target.n_work_blocks == 1 ), """ Targeted outlier rejection requires a target Ih_table with nblocks = 1""" self._target_Ih_table_block = target.blocked_data_list[0] self._target_Ih_table_block.calc_Ih() super(TargetedOutlierRejection, self).__init__(Ih_table, zmax) def _do_outlier_rejection(self): """Add indices (w.r.t. the Ih_table data) to self._outlier_indices.""" Ih_table = self._Ih_table_block target = self._target_Ih_table_block target_asu_Ih_dict = dict( zip(target.asu_miller_index, zip(target.Ih_values, target.variances)) ) Ih_table.Ih_table["target_Ih_value"] = flex.double(Ih_table.size, 0.0) Ih_table.Ih_table["target_Ih_sigmasq"] = flex.double(Ih_table.size, 0.0) for j, miller_idx in enumerate(Ih_table.asu_miller_index): if miller_idx in target_asu_Ih_dict: Ih_table.Ih_table["target_Ih_value"][j] = target_asu_Ih_dict[ miller_idx ][0] Ih_table.Ih_table["target_Ih_sigmasq"][j] = target_asu_Ih_dict[ miller_idx ][1] nz_sel = Ih_table.Ih_table["target_Ih_value"] != 0.0 Ih_table = Ih_table.select(nz_sel) norm_dev = ( Ih_table.intensities - (Ih_table.inverse_scale_factors * Ih_table.Ih_table["target_Ih_value"]) ) / ( ( Ih_table.variances + ( (Ih_table.inverse_scale_factors ** 2) * Ih_table.Ih_table["target_Ih_sigmasq"] ) ) ** 0.5 ) outliers_sel = flex.abs(norm_dev) > self._zmax outliers_isel = nz_sel.iselection().select(outliers_sel) self._outlier_indices.extend(outliers_isel)
[docs]class SimpleNormDevOutlierRejection(OutlierRejectionBase): """Algorithm using normalised deviations from the weighted intensity means. In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection. """ def _do_outlier_rejection(self): """Add indices (w.r.t. the Ih_table data) to self._outlier_indices.""" Ih_table = self._Ih_table_block I = Ih_table.intensities g = Ih_table.inverse_scale_factors w = Ih_table.weights wgIsum = ((w * g * I) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix wg2sum = ((w * g * g) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix # guard against zero divison errors - can happen due to rounding errors # or bad data giving g values are very small zero_sel = wg2sum == 0.0 # set as one for now, then mark as outlier below. This will only affect if # g is near zero, if w is zero then throw an assertionerror. wg2sum.set_selected(zero_sel, 1.0) assert w.all_gt(0) # guard against division by zero norm_dev = (I - (g * wgIsum / wg2sum)) / ( ((1.0 / w) + ((g / wg2sum) ** 2)) ** 0.5 ) norm_dev.set_selected(zero_sel, 1000) # to trigger rejection outliers_sel = flex.abs(norm_dev) > self._zmax self._outlier_indices.extend(outliers_sel.iselection())
[docs]class NormDevOutlierRejection(OutlierRejectionBase): """Algorithm using normalised deviations from the weighted intensity means. In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection. """ def _do_outlier_rejection(self): """Add indices (w.r.t. the Ih_table data) to self._outlier_indices.""" outlier_indices, other_potential_outliers = self._round_of_outlier_rejection() self._outlier_indices.extend(outlier_indices) internal_potential_outliers = other_potential_outliers while other_potential_outliers: good_sel = flex.bool(self._Ih_table_block.Ih_table.size(), False) good_sel.set_selected(internal_potential_outliers, True) self._Ih_table_block = self._Ih_table_block.select(good_sel) other_potential_outliers, internal_potential_outliers = self._check_for_more_outliers( other_potential_outliers ) def _check_for_more_outliers(self, other_potential_outliers): """ Recursive check for further outliers. Each iteration creates a new reduced-size Ih_table_block, which retains only symmetry groups that need further testing. Outlier indices must be transformed to give indices with respect to the initial Ih_table_block. Args: other_potential_outliers: A flex.size_t array of indices with respect to the initial Ih_table data """ # Find outlier indices with respect to reduced Ih_table block internal_outlier_indices, internal_other_potential_outliers = ( self._round_of_outlier_rejection() ) outliers_wrt_original = other_potential_outliers.select( internal_outlier_indices ) self._outlier_indices.extend(outliers_wrt_original) new_other_potential_outliers = other_potential_outliers.select( internal_other_potential_outliers ) # still wrt original Ih_table data return new_other_potential_outliers, internal_other_potential_outliers def _round_of_outlier_rejection(self): """ Calculate normal deviations from the data in the Ih_table. Returns: (tuple): tuple containing: outlier_indices: A flex.size_t array of outlier indices w.r.t the current Ih_table other_potential_outliers: A flex.size_t array of indices from the symmetry groups where outliers were found, excluding the indices of the outliers themselves (indices w.r.t current Ih_table). """ Ih_table = self._Ih_table_block I = Ih_table.intensities g = Ih_table.inverse_scale_factors w = Ih_table.weights wgIsum = ((w * g * I) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix wg2sum = ((w * g * g) * Ih_table.h_index_matrix) * Ih_table.h_expand_matrix wgIsum_others = wgIsum - (w * g * I) wg2sum_others = wg2sum - (w * g * g) # Now do the rejection analyis if n_in_group > 2 nh = Ih_table.calc_nh() sel = nh > 2 wg2sum_others_sel = wg2sum_others.select(sel) wgIsum_others_sel = wgIsum_others.select(sel) # guard against zero divison errors - can happen due to rounding errors # or bad data giving g values are very small zero_sel = wg2sum_others_sel == 0.0 # set as one for now, then mark as outlier below. This will only affect if # g is near zero, if w is zero then throw an assertionerror. wg2sum_others_sel.set_selected(zero_sel, 1.0) g_sel = g.select(sel) I_sel = I.select(sel) w_sel = w.select(sel) assert w_sel.all_gt(0) # guard against division by zero norm_dev = (I_sel - (g_sel * wgIsum_others_sel / wg2sum_others_sel)) / ( ((1.0 / w_sel) + ((g_sel / wg2sum_others_sel) ** 2)) ** 0.5 ) norm_dev.set_selected(zero_sel, 1000) # to trigger rejection z_score = flex.abs(norm_dev) # Want an array same size as Ih table. all_z_scores = flex.double(Ih_table.size, 0.0) all_z_scores.set_selected(sel.iselection(), z_score) outlier_indices, other_potential_outliers = determine_outlier_indices( Ih_table.h_index_matrix, all_z_scores, self._zmax ) return outlier_indices, other_potential_outliers