This documentation page refers to a previous release of DIALS (1.14).
Click here to go to the corresponding page for the latest version of DIALS

dials.algorithms.scaling

This module provides datastructures and algorithms for scaling.

model.model

Definitions of scaling models.

A scaling model is a collection of scaling model components with appropriate methods to define how these are composed into one model.

class dials.algorithms.scaling.model.model.ArrayScalingModel(parameters_dict, configdict, is_scaled=False)[source]

Bases: dials.algorithms.scaling.model.model.ScalingModelBase

A scaling model for an array-based parameterisation.

configure_components(reflection_table, experiment, params)[source]

Add the required reflection table data to the model components.

consecutive_refinement_order

list – a nested list of component names to indicate scaling order.

classmethod from_dict(obj)[source]

Create an ArrayScalingModel from a dictionary.

id_ = 'array'
limit_image_range(new_image_range)[source]

Modify the model to be suitable for a reduced image range.

For this model, this involves determining whether the number of parameters should be reduced and may reduce the number of parameters in the absorption and decay components.

Parameters:new_image_range (tuple) – The (start, end) of the new image range.
class dials.algorithms.scaling.model.model.KBScalingModel(parameters_dict, configdict, is_scaled=False)[source]

Bases: dials.algorithms.scaling.model.model.ScalingModelBase

A scaling model for a KB parameterisation.

configure_components(reflection_table, experiment, params)[source]

Add the required reflection table data to the model components.

consecutive_refinement_order

list – a nested list of component names to indicate scaling order.

classmethod from_dict(obj)[source]

Create an KBScalingModel from a dictionary.

id_ = 'KB'
class dials.algorithms.scaling.model.model.PhysicalScalingModel(parameters_dict, configdict, is_scaled=False)[source]

Bases: dials.algorithms.scaling.model.model.ScalingModelBase

A scaling model for a physical parameterisation.

configure_components(reflection_table, experiment, params)[source]

Add the required reflection table data to the model components.

consecutive_refinement_order

list – a nested list of component names to indicate scaling order.

classmethod from_dict(obj)[source]

Create a PhysicalScalingModel from a dictionary.

id_ = 'physical'
limit_image_range(new_image_range)[source]

Modify the model to be suitable for a reduced image range.

For this model, this involves determining whether the number of parameters should be reduced and may reduce the number of parameters in the scale and decay components.

Parameters:new_image_range (tuple) – The (start, end) of the new image range.
normalise_components()[source]

Do an invariant rescale of the scale at t=0 to one and the max B to zero.

class dials.algorithms.scaling.model.model.ScalingModelBase(configdict, is_scaled=False)[source]

Bases: object

Abstract base class for scaling models.

components

dict – a dictionary of the model components.

configdict

dict – a dictionary of the model configuration parameters.

configure_components(reflection_table, experiment, params)[source]

Add the required reflection table data to the model components.

consecutive_refinement_order

list – a nested list of component names.

This list indicates to the scaler the order to perform scaling in consecutive scaling mode (command line option concurrent=0). e.g. [[‘scale’, ‘decay’], [‘absorption’]] would cause the first cycle to refine scale and decay, and then absorption in a subsequent cycle.

error_model

error_model – The error model associated with the scaling model.

classmethod from_dict(obj)[source]

Create a scaling model from a dictionary.

id_ = None
is_scaled

bool – Indicte whether this model has previously been refined.

limit_image_range(new_image_range)[source]

Modify the model if necessary due to reducing the image range.

Parameters:new_image_range (tuple) – The (start, end) of the new image range.
n_params

dict – a dictionary of the model components.

normalise_components()[source]

Optionally define a normalisation of the parameters after scaling.

record_intensity_combination_Imid(Imid)[source]

Record the intensity combination Imid value.

set_error_model(error_model)[source]

Associate an error model with the dataset.

set_scaling_model_as_scaled()[source]

Set the boolean ‘is_scaled’ flag as True.

set_scaling_model_as_unscaled()[source]

Set the boolean ‘is_scaled’ flag as False.

set_valid_image_range(image_range)[source]

Set the valid image range for the model in the configdict.

show()[source]

Print a representation of the scaling model.

to_dict()[source]

Serialize the model to a dictionary.

Returns:A dictionary representation of the model.
Return type:dict
dials.algorithms.scaling.model.model.calculate_new_offset(current_image_0, new_image_0, new_norm_fac, n_old_param, n_new_param)[source]

Calculate the parameter offset for the new image range.

Returns:
An offset to apply when selecting the new parameters from the
existing parameters.
Return type:int
dials.algorithms.scaling.model.model.initialise_smooth_input(osc_range, one_osc_width, interval)[source]

Calculate the required smoother parameters.

Using information about the sweep and the chosen parameterisation interval, the required parameters for the smoother are determined.

Parameters:
  • osc_range (tuple) – The (start, stop) of an oscillation in degrees.
  • one_osc_width (float) – The oscillation width of a single image in degrees.
  • interval (float) – The required maximum separation between parameters in degrees.
Returns:

3-element tuple containing;

n_params (int): The number of parameters to use. norm_fac (float): The degrees to parameters space normalisation factor. interval (float): The actual interval in degrees between the parameters.

Return type:

tuple

outlier_rejection

Definitions of outlier rejection algorithms.

These algorithms use the Ih_table datastructures to perform calculations in groups of symmetry equivalent reflections. Two functions are provided, reject_outliers, to reject outlier and set flags given a reflection table and experiment object, and determine_outlier_index_arrays, which takes an Ih_table and returns flex.size_t index arrays of the outlier positions.

class dials.algorithms.scaling.outlier_rejection.NormDevOutlierRejection(Ih_table, zmax)[source]

Bases: dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase

Algorithm using normalised deviations from the weighted intensity means.

In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection.

class dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase(Ih_table, zmax)[source]

Bases: object

Base class for outlier rejection algorithms using an IhTable datastructure.

Subclasses must implement the _do_outlier_rejection method, which must add the indices of outliers to the _outlier_indices attribute. The algorithms are run upon initialisation and result in the population of the final_outlier_arrays.

final_outlier_arrays

list – A list of flex.size_t arrays of outlier indices w.r.t. the order of the initial reflection tables used to create the Ih_table.

class dials.algorithms.scaling.outlier_rejection.SimpleNormDevOutlierRejection(Ih_table, zmax)[source]

Bases: dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase

Algorithm using normalised deviations from the weighted intensity means.

In this case, the weighted mean is calculated from all reflections in the symmetry group excluding the test reflection.

class dials.algorithms.scaling.outlier_rejection.TargetedOutlierRejection(Ih_table, zmax, target)[source]

Bases: dials.algorithms.scaling.outlier_rejection.OutlierRejectionBase

Implementation of an outlier rejection algorithm against a target.

This algorithm requires a target Ih_table in addition to an Ih_table for the dataset under investigation. Normalised deviations are calculated from the intensity values in the target table.

dials.algorithms.scaling.outlier_rejection.determine_outlier_index_arrays(Ih_table, method='standard', zmax=6.0, target=None)[source]

Run an outlier algorithm and return the outlier indices.

Parameters:
  • Ih_table – A dials.algorithms.scaling.Ih_table.IhTable.
  • method (str) – Name (alias) of outlier rejection algorithm to use. If method=target, then the optional argument target must also be specified. Implemented methods; standard, simple, target.
  • zmax (float) – Normalised deviation threshold for classifying an outlier.
  • target (Optional[IhTable]) – An IhTable to use to obtain target Ih for outlier rejectiob, if method=target.
Returns:

A list of flex.size_t arrays, with one

array per dataset that was used to create the Ih_table. Importantly, the indices are the indices of the reflections in the initial reflection table used to create the Ih_table, not the indices of the data in the Ih_table.

Return type:

outlier_index_arrays (list)

Raises:

Sorry – if an invalid choice is made for the method.

dials.algorithms.scaling.outlier_rejection.reject_outliers(reflection_table, experiment, method='standard', zmax=6.0)[source]

Run an outlier algorithm on symmetry-equivalent intensities.

This method runs an intensity-based outlier rejection algorithm, comparing the deviations from the weighted mean in groups of symmetry equivalent reflections. The outliers are determined and the outlier_in_scaling flag is set in the reflection table.

The values intensity and variance must be set in the reflection table; these should be corrected but unscaled values, as an inverse_scale_factor will be applied during outlier rejection if this is present in the reflection table. The reflection table should also be prefiltered (e.g. not-integrated reflections should not be present) as no further filtering is done on the input table.

Parameters:
  • reflection_table – A reflection table.
  • experiment – A single experiment object.
  • method (str) – Name (alias) of outlier rejection algorithm to use.
  • zmax (float) – Normalised deviation threshold for classifying an outlier.
Returns:

The input table with the outlier_in_scaling flag set.

Return type:

reflection_table

Raises:

Sorry – if the reflection table does not contain intensity and variance.