This documentation page refers to a previous release of DIALS (2.2).
Click here to go to the corresponding page for the latest version of DIALS

Source code for dials.algorithms.indexing.basis_vector_search.optimise

from __future__ import absolute_import, division, print_function

import math

from scitbx.array_family import flex
from scitbx import lbfgs


[docs]def optimise_basis_vectors(reciprocal_lattice_points, vectors): optimised = flex.vec3_double() for vector in vectors: minimised = BasisVectorMinimiser(reciprocal_lattice_points, vector) optimised.append(tuple(minimised.x)) functionals = flex.double(minimised.target.compute_functional(v) for v in vectors) perm = flex.sort_permutation(functionals) optimised = optimised.select(perm) return optimised
# Optimise the initial basis vectors as per equation 11.4.3.4 of # Otwinowski et al, International Tables Vol. F, chapter 11.4 pp. 282-295
[docs]class BasisVectorTarget(object): def __init__(self, reciprocal_lattice_points): self.reciprocal_lattice_points = reciprocal_lattice_points self._xyz_parts = self.reciprocal_lattice_points.parts()
[docs] def compute_functional(self, vector): two_pi_S_dot_v = 2 * math.pi * self.reciprocal_lattice_points.dot(vector) return -flex.sum(flex.cos(two_pi_S_dot_v))
[docs] def compute_functional_and_gradients(self, vector): assert len(vector) == 3 two_pi_S_dot_v = 2 * math.pi * self.reciprocal_lattice_points.dot(vector) f = -flex.sum(flex.cos(two_pi_S_dot_v)) sin_part = flex.sin(two_pi_S_dot_v) g = flex.double( [flex.sum(2 * math.pi * self._xyz_parts[i] * sin_part) for i in range(3)] ) return f, g
[docs]class BasisVectorMinimiser(object): def __init__( self, reciprocal_lattice_points, vector, lbfgs_termination_params=None, lbfgs_core_params=lbfgs.core_parameters(m=20), ): self.reciprocal_lattice_points = reciprocal_lattice_points if not isinstance(vector, flex.double): self.x = flex.double(vector) else: self.x = vector.deep_copy() self.n = len(self.x) assert self.n == 3 self.target = BasisVectorTarget(self.reciprocal_lattice_points) self.minimizer = lbfgs.run( target_evaluator=self, termination_params=lbfgs_termination_params, core_params=lbfgs_core_params, )
[docs] def compute_functional_and_gradients(self): f, g = self.target.compute_functional_and_gradients(tuple(self.x)) return f, g