Click here to go to the corresponding page for the latest version of DIALS
Source code for dials.algorithms.indexing.stills_indexer
from __future__ import absolute_import, division, print_function
import copy
import math
import logging
import libtbx
from dxtbx.model.experiment_list import Experiment, ExperimentList
from dials.array_family import flex
from dials.algorithms.indexing.indexer import Indexer
from dials.util.multi_dataset_handling import generate_experiment_identifiers
from dials.algorithms.indexing.known_orientation import IndexerKnownOrientation
from dials.algorithms.indexing.lattice_search import BasisVectorSearch, LatticeSearch
from dials.algorithms.indexing.nave_parameters import NaveParameters
from dials.algorithms.indexing import DialsIndexError, DialsIndexRefineError
logger = logging.getLogger(__name__)
[docs]def calc_2D_rmsd_and_displacements(reflections):
displacements = flex.vec2_double(
reflections["xyzobs.px.value"].parts()[0],
reflections["xyzobs.px.value"].parts()[1],
) - flex.vec2_double(
reflections["xyzcal.px"].parts()[0], reflections["xyzcal.px"].parts()[1]
)
rmsd = math.sqrt(flex.mean(displacements.dot(displacements)))
return rmsd, displacements
[docs]def plot_displacements(reflections, predictions, experiments):
rmsd, displacements = calc_2D_rmsd_and_displacements(predictions)
from matplotlib import pyplot as plt
plt.figure()
for cv in displacements:
plt.plot([cv[0]], [-cv[1]], "r.")
plt.title(" %d spots, r.m.s.d. %5.2f pixels" % (len(displacements), rmsd))
plt.axes().set_aspect("equal")
plt.show()
plt.close()
plt.figure()
sz1, sz2 = experiments[0].detector[0].get_image_size()
for item, cv in zip(predictions, displacements):
plt.plot([item["xyzcal.px"][0]], [sz1 - item["xyzcal.px"][1]], "r.")
plt.plot([item["xyzobs.px.value"][0]], [sz1 - item["xyzobs.px.value"][1]], "g.")
plt.plot(
[item["xyzcal.px"][0], item["xyzcal.px"][0] + 10.0 * cv[0]],
[sz1 - item["xyzcal.px"][1], sz1 - item["xyzcal.px"][1] - 10.0 * cv[1]],
"r-",
)
plt.xlim([0, experiments[0].detector[0].get_image_size()[0]])
plt.ylim([0, experiments[0].detector[0].get_image_size()[1]])
plt.title(" %d spots, r.m.s.d. %5.2f pixels" % (len(displacements), rmsd))
plt.axes().set_aspect("equal")
plt.show()
plt.close()
[docs]def e_refine(params, experiments, reflections, graph_verbose=False):
# Stills-specific parameters we always want
assert params.refinement.reflections.outlier.algorithm in (
None,
"null",
), "Cannot index, set refinement.reflections.outlier.algorithm=null" # we do our own outlier rejection
from dials.algorithms.refinement.refiner import RefinerFactory
refiner = RefinerFactory.from_parameters_data_experiments(
params, reflections, experiments
)
refiner.run()
ref_sel = refiner.selection_used_for_refinement()
assert ref_sel.count(True) == len(reflections)
if not graph_verbose:
return refiner
RR = refiner.predict_for_reflection_table(reflections)
plot_displacements(reflections, RR, experiments)
return refiner
[docs]class StillsIndexer(Indexer):
"""Class for indexing stills"""
def __init__(self, reflections, experiments, params=None):
if params.refinement.reflections.outlier.algorithm in ("auto", libtbx.Auto):
# The stills_indexer provides its own outlier rejection
params.refinement.reflections.outlier.algorithm = "null"
super(StillsIndexer, self).__init__(reflections, experiments, params)
[docs] def index(self):
# most of this is the same as dials.algorithms.indexing.indexer.indexer_base.index(), with some stills
# specific modifications (don't re-index after choose best orientation matrix, but use the indexing from
# choose best orientation matrix, also don't use macrocycles) of refinement after indexing.
# 2017 update: do accept multiple lattices per shot
experiments = ExperimentList()
while True:
self.d_min = self.params.refinement_protocol.d_min_start
max_lattices = self.params.multiple_lattice_search.max_lattices
if max_lattices is not None and len(experiments) >= max_lattices:
break
if len(experiments) > 0:
cutoff_fraction = (
self.params.multiple_lattice_search.recycle_unindexed_reflections_cutoff
)
d_spacings = 1 / self.reflections["rlp"].norms()
d_min_indexed = flex.min(d_spacings.select(self.indexed_reflections))
min_reflections_for_indexing = cutoff_fraction * len(
self.reflections.select(d_spacings > d_min_indexed)
)
crystal_ids = self.reflections.select(d_spacings > d_min_indexed)["id"]
if (crystal_ids == -1).count(True) < min_reflections_for_indexing:
logger.info(
"Finish searching for more lattices: %i unindexed reflections remaining."
% (min_reflections_for_indexing)
)
break
n_lattices_previous_cycle = len(experiments)
# index multiple lattices per shot
if len(experiments) == 0:
new = self.find_lattices()
generate_experiment_identifiers(new)
experiments.extend(new)
if len(experiments) == 0:
raise DialsIndexError("No suitable lattice could be found.")
else:
try:
new = self.find_lattices()
generate_experiment_identifiers(new)
experiments.extend(new)
except Exception as e:
logger.info("Indexing remaining reflections failed")
logger.debug(
"Indexing remaining reflections failed, exception:\n" + str(e)
)
# reset reflection lattice flags
# the lattice a given reflection belongs to: a value of -1 indicates
# that a reflection doesn't belong to any lattice so far
self.reflections["id"] = flex.int(len(self.reflections), -1)
self.index_reflections(experiments, self.reflections)
if len(experiments) == n_lattices_previous_cycle:
# no more lattices found
break
if (
not self.params.stills.refine_candidates_with_known_symmetry
and self.params.known_symmetry.space_group is not None
):
self._apply_symmetry_post_indexing(
experiments, self.reflections, n_lattices_previous_cycle
)
# discard nearly overlapping lattices on the same shot
if self._check_have_similar_crystal_models(experiments):
break
self.indexed_reflections = self.reflections["id"] > -1
if self.d_min is None:
sel = self.reflections["id"] <= -1
else:
sel = flex.bool(len(self.reflections), False)
lengths = 1 / self.reflections["rlp"].norms()
isel = (lengths >= self.d_min).iselection()
sel.set_selected(isel, True)
sel.set_selected(self.reflections["id"] > -1, False)
self.unindexed_reflections = self.reflections.select(sel)
reflections_for_refinement = self.reflections.select(
self.indexed_reflections
)
if len(self.params.stills.isoforms) > 0:
logger.info("")
logger.info("#" * 80)
logger.info("Starting refinement")
logger.info("#" * 80)
logger.info("")
isoform_experiments = ExperimentList()
isoform_reflections = flex.reflection_table()
# Note, changes to params after initial indexing. Cannot use tie to target when fixing the unit cell.
self.all_params.refinement.reflections.outlier.algorithm = "null"
self.all_params.refinement.parameterisation.crystal.fix = "cell"
self.all_params.refinement.parameterisation.crystal.unit_cell.restraints.tie_to_target = (
[]
)
for expt_id, experiment in enumerate(experiments):
reflections = reflections_for_refinement.select(
reflections_for_refinement["id"] == expt_id
)
reflections["id"] = flex.int(len(reflections), 0)
refiners = []
for isoform in self.params.stills.isoforms:
iso_experiment = copy.deepcopy(experiment)
crystal = iso_experiment.crystal
if (
isoform.lookup_symbol
!= crystal.get_space_group().type().lookup_symbol()
):
logger.info(
"Crystal isoform lookup_symbol %s does not match isoform %s lookup_symbol %s"
% (
crystal.get_space_group().type().lookup_symbol(),
isoform.name,
isoform.lookup_symbol,
)
)
continue
crystal.set_B(isoform.cell.fractionalization_matrix())
logger.info("Refining isoform %s" % isoform.name)
refiners.append(
e_refine(
params=self.all_params,
experiments=ExperimentList([iso_experiment]),
reflections=reflections,
graph_verbose=False,
)
)
if len(refiners) == 0:
raise DialsIndexError(
"No isoforms had a lookup symbol that matched"
)
positional_rmsds = [
math.sqrt(P.rmsds()[0] ** 2 + P.rmsds()[1] ** 2)
for P in refiners
]
logger.info(
"Positional rmsds for all isoforms:" + str(positional_rmsds)
)
minrmsd_mm = min(positional_rmsds)
minindex = positional_rmsds.index(minrmsd_mm)
logger.info(
"The smallest rmsd is %5.1f um from isoform %s"
% (
1000.0 * minrmsd_mm,
self.params.stills.isoforms[minindex].name,
)
)
if self.params.stills.isoforms[minindex].rmsd_target_mm is not None:
logger.info(
"Asserting %f < %f"
% (
minrmsd_mm,
self.params.stills.isoforms[minindex].rmsd_target_mm,
)
)
assert (
minrmsd_mm
< self.params.stills.isoforms[minindex].rmsd_target_mm
)
logger.info(
"Acceptable rmsd for isoform %s."
% (self.params.stills.isoforms[minindex].name)
)
if len(self.params.stills.isoforms) == 2:
logger.info(
"Rmsd gain over the other isoform %5.1f um."
% (1000.0 * abs(positional_rmsds[0] - positional_rmsds[1]))
)
R = refiners[minindex]
# Now one last check to see if direct beam is out of bounds
if self.params.stills.isoforms[minindex].beam_restraint is not None:
from scitbx import matrix
refined_beam = matrix.col(
R.get_experiments()[0]
.detector[0]
.get_beam_centre_lab(experiments[0].beam.get_s0())[0:2]
)
known_beam = matrix.col(
self.params.stills.isoforms[minindex].beam_restraint
)
logger.info(
"Asserting difference in refined beam center and expected beam center %f < %f"
% (
(refined_beam - known_beam).length(),
self.params.stills.isoforms[minindex].rmsd_target_mm,
)
)
assert (
(refined_beam - known_beam).length()
< self.params.stills.isoforms[minindex].rmsd_target_mm
)
# future--circle of confusion could be given as a separate length in mm instead of reusing rmsd_target
experiment = R.get_experiments()[0]
experiment.crystal.identified_isoform = self.params.stills.isoforms[
minindex
].name
isoform_experiments.append(experiment)
reflections["id"] = flex.int(len(reflections), expt_id)
isoform_reflections.extend(reflections)
experiments = isoform_experiments
reflections_for_refinement = isoform_reflections
if self.params.refinement_protocol.mode == "repredict_only":
from dials.algorithms.indexing.nave_parameters import NaveParameters
from dials.algorithms.refinement.prediction.managed_predictors import (
ExperimentsPredictorFactory,
)
refined_experiments, refined_reflections = (
experiments,
reflections_for_refinement,
)
ref_predictor = ExperimentsPredictorFactory.from_experiments(
experiments,
force_stills=True,
spherical_relp=self.all_params.refinement.parameterisation.spherical_relp_model,
)
ref_predictor(refined_reflections)
refined_reflections["delpsical2"] = (
refined_reflections["delpsical.rad"] ** 2
)
for expt_id in range(len(refined_experiments)):
refls = refined_reflections.select(
refined_reflections["id"] == expt_id
)
nv = NaveParameters(
params=self.all_params,
experiments=refined_experiments[expt_id : expt_id + 1],
reflections=refls,
refinery=None,
graph_verbose=False,
)
experiments[expt_id].crystal = nv()
ref_predictor = ExperimentsPredictorFactory.from_experiments(
experiments,
force_stills=True,
spherical_relp=self.all_params.refinement.parameterisation.spherical_relp_model,
)
ref_predictor(refined_reflections)
elif self.params.refinement_protocol.mode is None:
refined_experiments, refined_reflections = (
experiments,
reflections_for_refinement,
)
else:
try:
refined_experiments, refined_reflections = self.refine(
experiments, reflections_for_refinement
)
except Exception as e:
s = str(e)
if len(experiments) == 1:
raise DialsIndexRefineError(e.message)
logger.info("Refinement failed:")
logger.info(s)
del experiments[-1]
break
self._unit_cell_volume_sanity_check(experiments, refined_experiments)
self.refined_reflections = refined_reflections.select(
refined_reflections["id"] > -1
)
for i, expt in enumerate(self.experiments):
ref_sel = self.refined_reflections.select(
self.refined_reflections["imageset_id"] == i
)
ref_sel = ref_sel.select(ref_sel["id"] >= 0)
for i_expt in set(ref_sel["id"]):
refined_expt = refined_experiments[i_expt]
expt.detector = refined_expt.detector
expt.beam = refined_expt.beam
expt.goniometer = refined_expt.goniometer
expt.scan = refined_expt.scan
refined_expt.imageset = expt.imageset
if not (
self.all_params.refinement.parameterisation.beam.fix == "all"
and self.all_params.refinement.parameterisation.detector.fix == "all"
):
# Experimental geometry may have changed - re-map centroids to
# reciprocal space
self.reflections.map_centroids_to_reciprocal_space(self.experiments)
# update for next cycle
experiments = refined_experiments
self.refined_experiments = refined_experiments
if self.refined_experiments is None:
raise DialsIndexRefineError("None of the experiments could refine.")
# discard experiments with zero reflections after refinement
id_set = set(self.refined_reflections["id"])
if len(id_set) < len(self.refined_experiments):
filtered_refined_reflections = flex.reflection_table()
for i in range(len(self.refined_experiments)):
if i not in id_set:
del self.refined_experiments[i]
for old, new in zip(sorted(id_set), range(len(id_set))):
subset = self.refined_reflections.select(
self.refined_reflections["id"] == old
)
subset["id"] = flex.int(len(subset), new)
filtered_refined_reflections.extend(subset)
self.refined_reflections = filtered_refined_reflections
if len(self.refined_experiments) > 1:
from dials.algorithms.indexing.compare_orientation_matrices import (
rotation_matrix_differences,
)
logger.info(
rotation_matrix_differences(self.refined_experiments.crystals())
)
logger.info("Final refined crystal models:")
for i, crystal_model in enumerate(self.refined_experiments.crystals()):
n_indexed = 0
for _ in experiments.where(crystal=crystal_model):
n_indexed += (self.reflections["id"] == i).count(True)
logger.info("model %i (%i reflections):" % (i + 1, n_indexed))
logger.info(crystal_model)
if (
"xyzcal.mm" in self.refined_reflections
): # won't be there if refine_all_candidates = False and no isoforms
self._xyzcal_mm_to_px(self.experiments, self.refined_reflections)
[docs] def experiment_list_for_crystal(self, crystal):
experiments = ExperimentList()
for imageset in self.experiments.imagesets():
experiments.append(
Experiment(
imageset=imageset,
beam=imageset.get_beam(),
detector=imageset.get_detector(),
goniometer=imageset.get_goniometer(),
scan=imageset.get_scan(),
crystal=crystal,
)
)
return experiments
[docs] def choose_best_orientation_matrix(self, candidate_orientation_matrices):
logger.info("*" * 80)
logger.info("Selecting the best orientation matrix")
logger.info("*" * 80)
class CandidateInfo(libtbx.group_args):
pass
candidates = []
params = copy.deepcopy(self.all_params)
for icm, cm in enumerate(candidate_orientation_matrices):
if icm >= self.params.basis_vector_combinations.max_refine:
break
# Index reflections in P1
sel = self.reflections["id"] == -1
refl = self.reflections.select(sel)
experiments = self.experiment_list_for_crystal(cm)
self.index_reflections(experiments, refl)
indexed = refl.select(refl["id"] >= 0)
indexed = indexed.select(indexed.get_flags(indexed.flags.indexed))
# If target symmetry supplied, try to apply it. Then, apply the change of basis to the reflections
# indexed in P1 to the target setting
if (
self.params.stills.refine_candidates_with_known_symmetry
and self.params.known_symmetry.space_group is not None
):
new_crystal, cb_op = self._symmetry_handler.apply_symmetry(cm)
if new_crystal is None:
logger.info("Cannot convert to target symmetry, candidate %d", icm)
continue
cm = new_crystal.change_basis(cb_op)
experiments = self.experiment_list_for_crystal(cm)
if not cb_op.is_identity_op():
indexed["miller_index"] = cb_op.apply(indexed["miller_index"])
if params.indexing.stills.refine_all_candidates:
try:
logger.info(
"$$$ stills_indexer::choose_best_orientation_matrix, candidate %d initial outlier identification",
icm,
)
acceptance_flags = self.identify_outliers(
params, experiments, indexed
)
# create a new "indexed" list with outliers thrown out:
indexed = indexed.select(acceptance_flags)
logger.info(
"$$$ stills_indexer::choose_best_orientation_matrix, candidate %d refinement before outlier rejection",
icm,
)
R = e_refine(
params=params,
experiments=experiments,
reflections=indexed,
graph_verbose=False,
)
ref_experiments = R.get_experiments()
# try to improve the outcome with a second round of outlier rejection post-initial refinement:
acceptance_flags = self.identify_outliers(
params, ref_experiments, indexed
)
# insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection
nv0 = NaveParameters(
params=params,
experiments=ref_experiments,
reflections=indexed,
refinery=R,
graph_verbose=False,
)
nv0()
acceptance_flags_nv0 = nv0.nv_acceptance_flags
indexed = indexed.select(acceptance_flags & acceptance_flags_nv0)
logger.info(
"$$$ stills_indexer::choose_best_orientation_matrix, candidate %d after positional and delta-psi outlier rejection",
icm,
)
R = e_refine(
params=params,
experiments=ref_experiments,
reflections=indexed,
graph_verbose=False,
)
ref_experiments = R.get_experiments()
nv = NaveParameters(
params=params,
experiments=ref_experiments,
reflections=indexed,
refinery=R,
graph_verbose=False,
)
crystal_model = nv()
assert (
len(crystal_model) == 1
), "$$$ stills_indexer::choose_best_orientation_matrix, Only one crystal at this stage"
crystal_model = crystal_model[0]
# Drop candidates that after refinement can no longer be converted to the known target space group
if (
not self.params.stills.refine_candidates_with_known_symmetry
and self.params.known_symmetry.space_group is not None
):
(
new_crystal,
cb_op_to_primitive,
) = self._symmetry_handler.apply_symmetry(crystal_model)
if new_crystal is None:
logger.info(
"P1 refinement yielded model diverged from target, candidate %d",
icm,
)
continue
rmsd, _ = calc_2D_rmsd_and_displacements(
R.predict_for_reflection_table(indexed)
)
except Exception as e:
logger.info(
"Couldn't refine candidate %d, %s: %s",
icm,
e.__class__.__name__,
str(e),
)
else:
logger.info(
"$$$ stills_indexer::choose_best_orientation_matrix, candidate %d done",
icm,
)
candidates.append(
CandidateInfo(
crystal=crystal_model,
green_curve_area=nv.green_curve_area,
ewald_proximal_volume=nv.ewald_proximal_volume(),
n_indexed=len(indexed),
rmsd=rmsd,
indexed=indexed,
experiments=ref_experiments,
)
)
else:
from dials.algorithms.refinement.prediction.managed_predictors import (
ExperimentsPredictorFactory,
)
ref_predictor = ExperimentsPredictorFactory.from_experiments(
experiments,
force_stills=True,
spherical_relp=params.refinement.parameterisation.spherical_relp_model,
)
rmsd, _ = calc_2D_rmsd_and_displacements(ref_predictor(indexed))
candidates.append(
CandidateInfo(
crystal=cm,
n_indexed=len(indexed),
rmsd=rmsd,
indexed=indexed,
experiments=experiments,
)
)
if len(candidates) == 0:
raise DialsIndexError("No suitable indexing solution found")
logger.info("**** ALL CANDIDATES:")
for i, XX in enumerate(candidates):
logger.info("\n****Candidate %d %s", i, XX)
cc = XX.crystal
if hasattr(cc, "get_half_mosaicity_deg"):
logger.info(
" half mosaicity %5.2f deg.", (cc.get_half_mosaicity_deg())
)
logger.info(" domain size %.0f Ang.", (cc.get_domain_size_ang()))
logger.info("\n**** BEST CANDIDATE:")
results = flex.double([c.rmsd for c in candidates])
best = candidates[flex.min_index(results)]
logger.info(best)
if params.indexing.stills.refine_all_candidates:
if best.rmsd > params.indexing.stills.rmsd_min_px:
raise DialsIndexError("RMSD too high, %f" % best.rmsd)
if len(candidates) > 1:
for i in range(len(candidates)):
if i == flex.min_index(results):
continue
if best.ewald_proximal_volume > candidates[i].ewald_proximal_volume:
logger.info(
"Couldn't figure out which candidate is best; picked the one with the best RMSD."
)
best.indexed["entering"] = flex.bool(best.n_indexed, False)
return best.crystal, best.n_indexed
[docs] def identify_outliers(self, params, experiments, indexed):
if not params.indexing.stills.candidate_outlier_rejection:
return flex.bool(len(indexed), True)
logger.info("$$$ stills_indexer::identify_outliers")
refiner = e_refine(params, experiments, indexed, graph_verbose=False)
RR = refiner.predict_for_reflection_table(indexed)
px_sz = experiments[0].detector[0].get_pixel_size()
class Match(object):
pass
matches = []
for item in RR.rows():
m = Match()
m.x_obs = item["xyzobs.px.value"][0] * px_sz[0]
m.y_obs = item["xyzobs.px.value"][1] * px_sz[1]
m.x_calc = item["xyzcal.px"][0] * px_sz[0]
m.y_calc = item["xyzcal.px"][1] * px_sz[1]
m.miller_index = item["miller_index"]
matches.append(m)
from rstbx.phil.phil_preferences import indexing_api_defs
import iotbx.phil
hardcoded_phil = iotbx.phil.parse(input_string=indexing_api_defs).extract()
from rstbx.indexing_api.outlier_procedure import OutlierPlotPDF
# comment this in if PDF graph is desired:
# hardcoded_phil.indexing.outlier_detection.pdf = "outlier.pdf"
# new code for outlier rejection inline here
if hardcoded_phil.indexing.outlier_detection.pdf is not None:
hardcoded_phil.__inject__(
"writer", OutlierPlotPDF(hardcoded_phil.indexing.outlier_detection.pdf)
)
# execute Sauter and Poon (2010) algorithm
from rstbx.indexing_api import outlier_detection
od = outlier_detection.find_outliers_from_matches(
matches, verbose=True, horizon_phil=hardcoded_phil
)
if hardcoded_phil.indexing.outlier_detection.pdf is not None:
od.make_graphs(canvas=hardcoded_phil.writer.R.c, left_margin=0.5)
hardcoded_phil.writer.R.c.showPage()
hardcoded_phil.writer.R.c.save()
return od.get_cache_status()
[docs] def refine(self, experiments, reflections):
acceptance_flags = self.identify_outliers(
self.all_params, experiments, reflections
)
# create a new "reflections" list with outliers thrown out:
reflections = reflections.select(acceptance_flags)
R = e_refine(
params=self.all_params,
experiments=experiments,
reflections=reflections,
graph_verbose=False,
)
ref_experiments = R.get_experiments()
# try to improve the outcome with a second round of outlier rejection post-initial refinement:
acceptance_flags = self.identify_outliers(
self.all_params, ref_experiments, reflections
)
# insert a round of Nave-outlier rejection on top of the r.m.s.d. rejection
nv0 = NaveParameters(
params=self.all_params,
experiments=ref_experiments,
reflections=reflections,
refinery=R,
graph_verbose=False,
)
nv0()
acceptance_flags_nv0 = nv0.nv_acceptance_flags
reflections = reflections.select(acceptance_flags & acceptance_flags_nv0)
R = e_refine(
params=self.all_params,
experiments=ref_experiments,
reflections=reflections,
graph_verbose=False,
)
ref_experiments = R.get_experiments()
nv = NaveParameters(
params=self.all_params,
experiments=ref_experiments,
reflections=reflections,
refinery=R,
graph_verbose=False,
)
nv()
rmsd, _ = calc_2D_rmsd_and_displacements(
R.predict_for_reflection_table(reflections)
)
matches = R.get_matches()
xyzcal_mm = flex.vec3_double(len(reflections))
xyzcal_mm.set_selected(matches["iobs"], matches["xyzcal.mm"])
reflections["xyzcal.mm"] = xyzcal_mm
reflections.set_flags(matches["iobs"], reflections.flags.used_in_refinement)
reflections["entering"] = flex.bool(len(reflections), False)
if self.all_params.indexing.stills.set_domain_size_ang_value is not None:
for exp in ref_experiments:
exp.crystal.set_domain_size_ang(
self.all_params.indexing.stills.set_domain_size_ang_value
)
if self.all_params.indexing.stills.set_mosaic_half_deg_value is not None:
for exp in ref_experiments:
exp.crystal.set_half_mosaicity_deg(
self.all_params.indexing.stills.set_mosaic_half_deg_value
)
return ref_experiments, reflections
"""Mixin class definitions that override the dials indexing class methods specific to stills"""