Click here to go to the corresponding page for the latest version of DIALS
Source code for dials.algorithms.symmetry.cosym.seed_clustering
"""Seed clustering method for cosym analysis."""
from __future__ import absolute_import, division, print_function
import logging
logger = logging.getLogger(__name__)
import math
import numpy as np
from scipy.cluster import hierarchy
import scipy.spatial.distance as ssd
from sklearn.neighbors import NearestNeighbors
from sklearn import metrics
from libtbx import Auto
from libtbx.utils import Sorry
from scitbx.array_family import flex
[docs]class seed_clustering(object):
"""Perform seed clustering of coordinates.
Labels points into clusters such that cluster contains exactly one copy
of each dataset, then performs silhouettete analysis on the resulting
clusters to determine the true number of clusters present, under the
constraint that only equal-sized clusterings are valid, i.e. each
dataset should appear an equal number of times in each cluster.
See also:
https://en.wikipedia.org/wiki/Silhouette_(clustering)
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
Attributes:
cluster_labels (scitbx.array_family.flex.int): A label for each coordinate.
"""
def __init__(
self, coordinates, n_datasets, n_sym_ops, min_silhouette_score, n_clusters=Auto
):
"""Initialise a seed_clustering object.
Args:
coordinates (scitbx.array_family.flex.double): The input array of coordinates
on which to perform the analysis. The dimensions of the array should
be (dim, `n_datasets` * `n_sym_ops`), where dim is the number of
dimensions being used for the analysis.
n_datasets (int): The number of datasets.
n_sym_ops (int): The number of symmetry operations.
min_silhouette_score (float): The minimum silhouette score to be used
in automatic determination of the number of clusters.
n_clusters (int): Optionally override the automatic determination of the
number of clusters.
"""
self.coords = coordinates
self.cluster_labels = self._label_clusters_first_pass(n_datasets, n_sym_ops)
if flex.max(self.cluster_labels) == 0:
# assume single cluster
return
dist_mat, linkage_matrix = self._hierarchical_clustering()
self.cluster_labels, _ = self._silhouette_analysis(
self.cluster_labels,
linkage_matrix,
n_clusters=n_clusters,
min_silhouette_score=min_silhouette_score,
)
def _label_clusters_first_pass(self, n_datasets, n_sym_ops):
"""First pass labelling of clusters.
Labels points into clusters such that cluster contains exactly one copy
of each dataset.
Args:
n_datasets (int): The number of datasets.
n_sym_ops (int): The number of symmetry operations.
Returns:
cluster_labels (scitbx.array_family.flex.int): A label for each coordinate, labelled from
0 .. n_sym_ops.
"""
# initialise cluster labels: -1 signifies doesn't belong to a cluster
cluster_labels = flex.int(self.coords.all()[0], -1)
X_orig = self.coords.as_numpy_array()
cluster_id = 0
while cluster_labels.count(-1) > 0:
dataset_ids = (
flex.int_range(n_datasets * n_sym_ops) % n_datasets
).as_numpy_array()
coord_ids = flex.int_range(dataset_ids.size).as_numpy_array()
# select only those points that don't already belong to a cluster
sel = np.where(cluster_labels == -1)
X = X_orig[sel]
dataset_ids = dataset_ids[sel]
coord_ids = coord_ids[sel]
# choose a high density point as seed for cluster
nbrs = NearestNeighbors(
n_neighbors=min(11, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors(X)
average_distance = flex.double([dist[1:].mean() for dist in distances])
i = flex.min_index(average_distance)
d_id = dataset_ids[i]
cluster = np.array([coord_ids[i]])
cluster_dataset_ids = np.array([d_id])
xis = np.array([X[i]])
for j in range(n_datasets - 1):
# select only those rows that don't correspond to a dataset already
# present in current cluster
sel = np.where(dataset_ids != d_id)
X = X[sel]
dataset_ids = dataset_ids[sel]
coord_ids = coord_ids[sel]
assert len(X) > 0
# Find nearest neighbour in cosine-space to the current cluster centroid
nbrs = NearestNeighbors(
n_neighbors=min(1, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors([xis.mean(axis=0)])
k = indices[0][0]
d_id = dataset_ids[k]
cluster = np.append(cluster, coord_ids[k])
cluster_dataset_ids = np.append(cluster_dataset_ids, d_id)
xis = np.append(xis, [X[k]], axis=0)
# label this cluster
cluster_labels.set_selected(flex.size_t(cluster.tolist()), cluster_id)
cluster_id += 1
return cluster_labels
def _hierarchical_clustering(self):
"""Perform hierarchical clustering on cluster centroids.
Returns:
Tuple[numpy.ndarray, numpy.ndarray]:
A tuple containing
the distance matrix as output by :func:`scipy.spatial.distance.pdist` and
the linkage matrix as output by :func:`scipy.cluster.hierarchy.linkage`.
"""
cluster_centroids = []
X = self.coords.as_numpy_array()
for i in set(self.cluster_labels):
cluster_centroids.append(
X[(self.cluster_labels == i).iselection().as_numpy_array()].mean(axis=0)
)
# hierarchical clustering of cluster centroids, using cosine metric
dist_mat = ssd.pdist(cluster_centroids, metric="cosine")
return dist_mat, hierarchy.linkage(dist_mat, method="average")
def _silhouette_analysis(
self, cluster_labels, linkage_matrix, n_clusters, min_silhouette_score
):
"""Compare valid equal-sized clustering using silhouette scores.
Args:
cluster_labels (scitbx.array_family.flex.int):
linkage_matrix (numpy.ndarray): The hierarchical clustering of centroids of the
initial clustering as produced by
:func:`scipy.cluster.hierarchy.linkage`.
n_clusters (int): Optionally override the automatic determination of the
number of clusters.
min_silhouette_score (float): The minimum silhouette score to be used
in automatic determination of the number of clusters.
Returns:
cluster_labels (scitbx.array_family.flex.int): A label for each coordinate.
"""
eps = 1e-6
X = self.coords.as_numpy_array()
cluster_labels_input = cluster_labels
distances = linkage_matrix[::, 2]
distances = np.insert(distances, 0, 0)
silhouette_scores = flex.double()
thresholds = flex.double()
threshold_n_clusters = flex.size_t()
for threshold in distances[1:]:
cluster_labels = cluster_labels_input.deep_copy()
labels = hierarchy.fcluster(
linkage_matrix, threshold - eps, criterion="distance"
).tolist()
counts = [labels.count(l) for l in set(labels)]
if len(set(counts)) > 1:
# only equal-sized clusters are valid
continue
n = len(set(labels))
if n == 1:
continue
elif n_clusters is not Auto and n != n_clusters:
continue
for i in range(len(labels)):
cluster_labels.set_selected(
cluster_labels_input == i, int(labels[i] - 1)
)
if len(set(cluster_labels)) == X.shape[0]:
# silhouette coefficient not defined if 1 dataset per cluster
# not sure what the default value should be
sample_silhouette_values = np.full(cluster_labels.size(), 0)
else:
# Compute the silhouette scores for each sample
sample_silhouette_values = metrics.silhouette_samples(
X, cluster_labels.as_numpy_array(), metric="cosine"
)
silhouette_avg = sample_silhouette_values.mean()
silhouette_scores.append(silhouette_avg)
thresholds.append(threshold)
threshold_n_clusters.append(n)
count_negative = (sample_silhouette_values < 0).sum()
logger.info("Clustering:")
logger.info(" Number of clusters: %i" % n)
logger.info(
" Threshold score: %.3f (%.1f deg)"
% (threshold, math.degrees(math.acos(1 - threshold)))
)
logger.info(" Silhouette score: %.3f" % silhouette_avg)
logger.info(
" -ve silhouette scores: %.1f%%"
% (100 * count_negative / sample_silhouette_values.size)
)
if n_clusters is Auto:
idx = flex.max_index(silhouette_scores)
else:
idx = flex.first_index(threshold_n_clusters, n_clusters)
if idx is None:
raise Sorry("No valid clustering with %i clusters" % n_clusters)
if n_clusters is Auto and silhouette_scores[idx] < min_silhouette_score:
# assume single cluster
cluster_labels = flex.int(cluster_labels.size(), 0)
else:
threshold = thresholds[idx] - eps
labels = hierarchy.fcluster(linkage_matrix, threshold, criterion="distance")
cluster_labels = flex.double(cluster_labels.size(), -1)
for i in range(len(labels)):
cluster_labels.set_selected(
cluster_labels_input == i, float(labels[i] - 1)
)
return cluster_labels, threshold
def _plot_silhouette(sample_silhouette_values, cluster_labels, file_name):
from matplotlib import pyplot as plt
fig = plt.figure()
ax1 = fig.gca()
y_lower = 10
n_clusters = len(set(cluster_labels))
silhouette_avg = sample_silhouette_values.mean()
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = plt.cm.Spectral(float(i) / n_clusters)
ax1.fill_betweenx(
np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,
)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
fig.savefig(file_name)
plt.close(fig)