Click here to go to the corresponding page for the latest version of DIALS
Extending DIALS¶
Contents
Entry points¶
DIALS uses entry points
to define points in the code that can be extended by external developers. These entry
points are defined in the dials
and dxtbx
libtbx_refresh.py
files:
import libtbx.pkg_utils
libtbx.pkg_utils.define_entry_points(
{
"dxtbx.profile_model": [
"gaussian_rs = dials.extensions.gaussian_rs_profile_model_ext:GaussianRSProfileModelExt"
],
"dxtbx.scaling_model_ext": [
"physical = dials.algorithms.scaling.model.model:PhysicalScalingModel",
"KB = dials.algorithms.scaling.model.model:KBScalingModel",
"array = dials.algorithms.scaling.model.model:ArrayScalingModel",
],
"dials.index.basis_vector_search": [
"fft1d = dials.algorithms.indexing.basis_vector_search:FFT1D",
"fft3d = dials.algorithms.indexing.basis_vector_search:FFT3D",
"real_space_grid_search = dials.algorithms.indexing.basis_vector_search:RealSpaceGridSearch",
],
"dials.index.lattice_search": [
"low_res_spot_match = dials.algorithms.indexing.lattice_search:LowResSpotMatch"
],
"dials.integration.background": [
"Auto = dials.extensions.auto_background_ext:AutoBackgroundExt",
Developers implementing their own extensions can register their extensions either in
their package libtbx.refresh.py
if writing a cctbx-style package, or in their
package setup.py
if using the
setuptools framework.
The list of installed plugins can be obtained by running the dials.plugins
command:
$ dials.plugins
dials.index.basis_vector_search_strategy Basis vector search strategies
fft1d (dials.algorithms.indexing.basis_vector_search.strategies via libtbx.dials 0.0.0)
fft3d (dials.algorithms.indexing.basis_vector_search.strategies via libtbx.dials 0.0.0)
real_space_grid_search (dials.algorithms.indexing.basis_vector_search.strategies via libtbx.dials 0.0.0)
dxtbx.scaling_model_ext scaling models
KB (dials.algorithms.scaling.model.scaling_model_ext via libtbx.dials 0.0.0)
array (dials.algorithms.scaling.model.scaling_model_ext via libtbx.dials 0.0.0)
physical (dials.algorithms.scaling.model.scaling_model_ext via libtbx.dials 0.0.0)
dxtbx.profile_model profile models
gaussian_rs (dials.extensions.gaussian_rs_profile_model_ext via libtbx.dials 0.0.0)
dials.index.lattice_search_strategy Lattice search strategies
low_res_spot_match (dials.algorithms.indexing.lattice_search_strategies via libtbx.dials 0.0.0)
Adding new format classes¶
dxtbx
now discovers format classes during configuration time instead of
at runtime. New format classes can either be added into the dxtbx/format
directory, registered by other python packages using the
‘dxtbx.format’ entry point, or installed by the user via the
‘dxtbx.install_format’ command.
To add a new format class to be distributed with dials
, please submit a pull request
to the dxtbx repository.
To register format classes stored in ~/.dxtbx you need to run ‘dxtbx.install_format -u’ whenever you add or remove format classes.
Writing a new format class¶
The dxtbx format class framework enables beamline staff and users to easily add support for new detector types and beamlines. In essence all that is needed is to implement a Python class which extends the Format class to add some specific details about this detector and the associated beamline/experimental environment.
In particular there are two groups of things which need to be implemented - a static method named understand which will take a look at the image and return True if it understands it, and a number of class methods which need to override the construction of the dxtbx models.
understand Static Method¶
This method is the key to how the whole framework operates - you write code which looks at the image to decide whether it is right for this class. If it is not you must return False - i.e. if you are making a custom class for a given detector serial number and it is given an image from a different detector.
Ideally your implementation will inherit from a similar Format class and just apply further customizations. Your implementation will be chosen to read the image if it is the most customized, i.e. it derives from the longest chain of ancestors, all of which claim to understand the image.
Class Methods¶
The class methods need to use the built in factories to construct descriptions of the experimental apparatus from the image, namely the goniometer, detector, beam and scan. In many cases the “simple” model will be the best which is often trivial. In other cases it may be more complex but will hopefully correspond to an already existing factory method.
As an example, let’s pretend your beamline has a “reversed” rotation axis. We can create a new format class that correctly understands images from your beamline and instantiates a goniometer model with a reversed direction goniometer:
from __future__ import absolute_import, division, print_function
from dxtbx.format.FormatCBFMiniPilatus import FormatCBFMiniPilatus
class FormatCBFMiniPilatusMyBeamline(FormatCBFMiniPilatus):
"""A class for reading mini CBF format Pilatus images for MyBeamline."""
@staticmethod
def understand(image_file):
"""Check the detector serial number to check it is from MyBeamline."""
header = FormatCBFMiniPilatus.get_cbf_header(image_file)
for record in header.split("\n"):
if (
"# Detector" in record
and "PILATUS" in record
and "S/N 42-4242" in header
):
return True
return False
def _goniometer(self):
"""Return a model for a simple single-axis reversed direction goniometer."""
return self._goniometer_factory.single_axis_reverse()
We can then register this format class in the libtbx_refresh.py
file of our local
myproject
cctbx
package:
import libtbx.pkg_utils
libtbx.pkg_utils.define_entry_points(
{
"dxtbx.format": [
"FormatCBFMiniPilatusMyBeamline:FormatCBFMiniPilatus = myproject.my_format_module:FormatCBFMiniPilatusMyBeamline",
],
}
)
More generally, the format of an entry point for dxtbx.format is:
"FormatMyClass:FormatBaseClass1,FormatBaseClass2 = myproject.myformat:FormatMyClass"
Format classes must be named ‘Format*’, and must inherit either from other format classes or from the top-level format class, ‘Format’. Base classes must be given as their original name and must therefore not contain ‘.’s.
To view the full hierarchy of registered format classes, run the command
dxtbx.show_registry
:
$ dxtbx.show_registry
Showing hierarchy of classes in the dxtbx registry. The root classes are shown with depth of 1, and subclasses are shown indented and with a higher depth number.
Depth Class name
0 Format
1 FormatBruker
2 FormatBrukerFixedChi
2 FormatBrukerPhotonII
...
Extending dials.index¶
dials.index
defines two possible entry points,
dials.index.basis_vector_search_strategy
and
dials.index.lattice_search_strategy
.
Basis vector search strategies¶
The dials.index.basis_vector_search_strategy
entry point can be used to extend the
list of possible basis vector search strategies available in DIALS, by delegating the
search for a list of possible real space basis vectors to a strategy. DIALS currently
includes the fft1d, fft3d and real_space_grid_search strategies. A basis vector
search strategy should inherit from the class
dials.algorithms.indexing.basis_vector_search.strategies.Strategy
and provide
an implementation of the find_basis_vectors
method.
from libtbx import phil
from dials.algorithms.indexing.basis_vector_search.strategies import Strategy
mystrategy_phil_str = """\
magic_parameter = 42
.help = "This is a magic parameter."
.type = float
"""
phil_scope = phil.parse(mystrategy_phil_str)
class MyStrategy(Strategy):
"""Basis vector search using my magic algorithm."""
def find_basis_vectors(self, reciprocal_lattice_vectors):
"""Find a list of likely basis vectors.
Args:
reciprocal_lattice_vectors (scitbx.array_family.flex.vec3_double):
The list of reciprocal lattice vectors to search for periodicity.
Returns:
A tuple containing the list of basis vectors and a flex.bool array
identifying which reflections were used in indexing.
"""
used_in_indexing = flex.bool(reciprocal_lattice_vectors.size(), True)
# determine the list of candidate_basis_vectors
...
return candidate_basis_vectors, used_in_indexing
We can now register this new basis vector search strategy in the libtbx_refresh.py
file of our local myproject
package:
import libtbx.pkg_utils
libtbx.pkg_utils.define_entry_points(
{
"dials.index.basis_vector_search_strategy": [
"mystrategy = myproject.mystrategy:MyStrategy",
],
}
)
Lattice search strategies¶
An alternative entry point into dials.index is
dials.index.lattice_search_strategy
, where the entire crystal model search is
delegated to the strategy.
from libtbx import phil
from dials.algorithms.indexing.lattice_search_strategies import Strategy
mystrategy_phil_str = """\
magic_parameter = 42
.help = "This is a magic parameter."
.type = float
"""
class MyLatticeSearch(Strategy):
"""My magic lattice search strategy."""
phil_scope = phil.parse(mystrategy_phil_str)
def find_crystal_models(self, reflections, experiments):
"""Find a list of candidate crystal models.
Args:
reflections (dials.array_family.flex.reflection_table):
The found spots centroids and associated data
experiments (dxtbx.model.experiment_list.ExperimentList):
The experimental geometry models
Returns:
A list of candidate crystal models.
"""
# determine the list of candidate_crystal_models
return candidate_crystal_models
As above, register this new lattice search strategy in the libtbx_refresh.py
file of our local myproject
package:
import libtbx.pkg_utils
libtbx.pkg_utils.define_entry_points(
{
"dials.index.lattice_search_strategy": [
"mylatticesearch = myproject.mylatticesearch:MyLatticeSearch",
],
}
)
Extending dials.scale¶
dials.scale can be extended by defining new scaling models using the
entry point dxtbx.scaling_model_ext
.
Defining a scaling model¶
A new scaling model can be defined, which should inherit from the class
dials.algorithms.scaling.model.model.ScalingModelBase
. A new
scaling model must define the from_dict, from_data and
configure_components methods, and should also define an __init__ method. The model
must also define consecutive_refinement_order to indicate which order the components
should be refined for the consecutive scaling mode.
The scaling model must be composed of multiplicative components, which must
inherit from
dials.algorithms.scaling.model.components.scale_components.ScaleComponentBase
.
from libtbx import phil
from scitbx.array_family import flex
from dials.algorithms.scaling.model.model import ScalingModelBase
from mypath.components import SpecialComponent
mymodel_phil_str = """\
special_correction = True
.help = "Option to toggle the special correction."
.type = bool
"""
class MyScalingModel(ScalingModelBase):
"""My scaling model."""
id_ = "modelname"
phil_scope = phil.parse(mymodel_phil_str)
def __init__(self, parameters_dict, configdict, is_scaled=False):
super(MyScalingModel, self).__init__(configdict, is_scaled)
if "special" in configdict["corrections"]:
self._components["special"] = SpecialComponent(
parameters_dict["special"]["parameters"],
parameters_dict["special"]["parameter_esds"],
)
@classmethod
def from_dict(cls, obj):
"""Create a MyScalingModel from a dictionary."""
configdict = obj["configuration_parameters"]
is_scaled = obj["is_scaled"]
if "special" in configdict["corrections"]:
parameters = flex.double(obj["special"]["parameters"])
if "est_standard_devs" in obj["special"]:
parameter_esds = flex.double(obj["special"]["est_standard_devs"])
parameters_dict = {"special : {"parameters" : parameters, "parameter_esds" : parameter_esds}}
return cls(parameters_dict, configdict, is_scaled)
@classmethod
def from_data(cls, params, experiment, reflection_table):
"""Create the MycalingModel from data."""
configdict = OrderedDict({"corrections": []})
parameters_dict = {}
if params.modelname.special_correction:
configdict["corrections"].append("special")
parameters_dict["special"] = {
"parameters": flex.double([1.0, 1.0, 1.0]),
"parameter_esds": None,
}
configdict["important_number"] = len(reflection_table)
return cls(parameters_dict, configdict)
def configure_components(self, reflection_table, experiment, params):
"""Add the required reflection table data to the model components."""
if "special" in self.components:
self.components["special"].data = {"d": reflection_table["d"]}
def consecutive_refinement_order(self):
"A nested list of the refinement order".
return [["special"]]