"""Contains classes used to manage the reflections used during refinement,
principally ReflectionManager."""
from __future__ import annotations
import logging
import math
import random
import libtbx
from dxtbx.model import tof_helpers
from dxtbx.model.experiment_list import ExperimentList
from libtbx.phil import parse
from scitbx import matrix
from scitbx.math import five_number_summary
import dials.util
from dials.algorithms.refinement import DialsRefineConfigError, weighting_strategies
from dials.algorithms.refinement.analysis.centroid_analysis import CentroidAnalyser
from dials.algorithms.refinement.outlier_detection.outlier_base import (
phil_str as outlier_phil_str,
)
from dials.algorithms.refinement.refinement_helpers import (
calculate_frame_numbers,
set_obs_s1,
)
from dials.array_family import flex
logger = logging.getLogger(__name__)
# constants
RAD2DEG = 180.0 / math.pi
DEG2RAD = math.pi / 180.0
# PHIL
format_data = {"outlier_phil": outlier_phil_str}
phil_str = """
reflections_per_degree = Auto
.help = "The number of centroids per degree of the sequence to use in"
"refinement. The default (Auto) uses all reflections unless"
"the dataset is wider than a single turn. Then the number of"
"reflections may be reduced until a minimum of 100 per degree of"
"the sequence is reached to speed up calculations. Set this to None"
"to force use all of suitable reflections."
.type = float(value_min=0.)
.expert_level = 1
minimum_sample_size = 1000
.help = "cutoff that determines whether subsetting of the input"
"reflection list is done"
.type = int
.expert_level = 1
maximum_sample_size = None
.help = "The maximum number of reflections to use in refinement."
"Overrides reflections_per_degree if that produces a"
"larger sample size."
.type = int(value_min=1)
.expert_level = 1
random_seed = 42
.help = "Random seed to use when sampling to create a working set of"
"reflections. May be int or None."
.type = int
.expert_level = 1
close_to_spindle_cutoff = 0.02
.help = "The inclusion criterion currently uses the volume of the"
"parallelepiped formed by the spindle axis, the incident"
"beam and the scattered beam. If this is lower than some"
"value then the reflection is excluded from refinement."
"In detector space, these are the reflections located close"
"to the rotation axis."
.type = float(value_min = 0)
.expert_level = 1
scan_margin = 0.0
.help = "Reflections within this value in degrees from the centre of the"
"first or last image of the scan will be removed before"
"refinement, unless doing so would result in too few remaining"
"reflections. Reflections that are truncated at the scan edges"
"have poorly-determined centroids and can bias the refined model"
"if they are included."
.type = float(value_min=0,value_max=5)
.expert_level = 1
weighting_strategy
.help = "Parameters to configure weighting strategy overrides"
.expert_level = 1
{{
override = statistical stills constant external_deltapsi
.help = "selection of a strategy to override default weighting behaviour"
.type = choice
delpsi_constant = 1000000
.help = "used by the stills strategy to choose absolute weight value"
"for the angular distance from Ewald sphere term of the target"
"function, whilst the X and Y parts use statistical weights"
.type = float(value_min = 0)
constants = 1.0 1.0 1.0
.help = "constant weights for three parts of the target function,"
"whether the case is for stills or scans. The default gives"
"unit weighting."
.type = floats(size = 3, value_min = 0)
wavelength_weight = 1e4
.help = "Weight for the wavelength term in the target function for"
"Laue refinement"
.type = float(value_min = 0)
}}
{outlier_phil}
""".format(**format_data)
phil_scope = parse(phil_str)
[docs]
class BlockCalculator:
"""Utility class to calculate and set columns in the provided reflection
table, which will be used during scan-varying refinement. The columns are a
'block' number and an associated 'block_centre', giving the image number in
the centre of the block"""
[docs]
def __init__(self, experiments, reflections):
self._experiments = experiments
self._reflections = reflections
# do not create block column in the reflection table yet, in case we don't
# need it at all
def _create_block_columns(self):
"""Create a column to contain the block number."""
from scitbx.array_family import flex
self._reflections["block"] = flex.size_t(len(self._reflections))
self._reflections["block_centre"] = flex.double(len(self._reflections))
[docs]
def per_width(self, width, deg=True):
"""Set blocks for all experiments according to a constant width"""
if deg:
width *= DEG2RAD
self._create_block_columns()
# get observed phi in radians
phi_obs = self._reflections["xyzobs.mm.value"].parts()[2]
for iexp, exp in enumerate(self._experiments):
sel = self._reflections["id"] == iexp
isel = sel.iselection()
exp_phi = phi_obs.select(isel)
start, stop = exp.scan.get_oscillation_range(deg=False)
nblocks = int(abs(stop - start) / width) + 1
# ensure width has the right sign and is wide enough that all reflections
# get assigned a block
if stop > start:
_width = width + 1e-11
elif stop == start:
_width = 1e-11
else:
_width = -width + 1e-11
half_width = width * (0.5 - 1e-11) # ensure round down behaviour
block_starts = [start + n * _width for n in range(nblocks)]
block_centres = [
exp.scan.get_array_index_from_angle(e + half_width, deg=False)
for e in block_starts
]
for b_num, (b_start, b_cent) in enumerate(zip(block_starts, block_centres)):
sub_isel = isel.select(
(b_start <= exp_phi) & (exp_phi <= (b_start + _width))
)
self._reflections["block"].set_selected(sub_isel, b_num)
self._reflections["block_centre"].set_selected(sub_isel, b_cent)
return self._reflections
[docs]
def per_image(self):
"""Set one block per image for all experiments"""
self._create_block_columns()
# get observed phi in radians
phi_obs = self._reflections["xyzobs.mm.value"].parts()[2]
for iexp, exp in enumerate(self._experiments):
sel = self._reflections["id"] == iexp
isel = sel.iselection()
exp_phi = phi_obs.select(isel)
# convert phi to integer frames
frames = exp.scan.get_array_index_from_angle(exp_phi, deg=False)
frames = flex.floor(frames).iround()
start, stop = flex.min(frames), flex.max(frames)
frame_range = range(start, stop + 1)
for f_num, f in enumerate(frame_range):
sub_isel = isel.select(frames == f)
f_cent = f + 0.5
self._reflections["block"].set_selected(sub_isel, f_num)
self._reflections["block_centre"].set_selected(sub_isel, f_cent)
return self._reflections
[docs]
class ReflectionManagerFactory:
[docs]
@staticmethod
def from_parameters_reflections_experiments(
params, reflections, experiments, do_stills=False
):
"""Given a set of parameters and models, build a reflection manager
Params:
params The input parameters
Returns:
The reflection manager instance
"""
# While a random subset of reflections is used, continue to
# set random.seed to get consistent behaviour
if params.random_seed is not None:
random.seed(params.random_seed)
flex.set_random_seed(params.random_seed)
logger.debug("Random seed set to %d", params.random_seed)
if experiments.all_laue() or experiments.all_tof():
return ReflectionManagerFactory.laue_manager(
experiments, reflections, params
)
elif do_stills:
return ReflectionManagerFactory.stills_manager(
experiments, reflections, params
)
else:
return ReflectionManagerFactory.rotation_scan_manager(
experiments, reflections, params
)
[docs]
@staticmethod
def stills_manager(
experiments: ExperimentList,
reflections: flex.reflection_table,
params: libtbx.phil.scope_extract,
) -> StillsReflectionManager:
refman = StillsReflectionManager
## Outlier detection
if params.outlier.algorithm in ("auto", libtbx.Auto):
params.outlier.algorithm = "sauter_poon"
if params.outlier.sauter_poon.px_sz is libtbx.Auto:
# get this from the first panel of the first detector
params.outlier.sauter_poon.px_sz = experiments.detectors()[0][
0
].get_pixel_size()
if params.outlier.algorithm in ("null", None):
outlier_detector = None
else:
colnames = ["x_resid", "y_resid"]
params.outlier.block_width = None
from dials.algorithms.refinement.outlier_detection import (
CentroidOutlierFactory,
)
outlier_detector = CentroidOutlierFactory.from_parameters_and_colnames(
params, colnames
)
## Weighting strategy
# check incompatible weighting strategy
if params.weighting_strategy.override == "statistical":
raise DialsRefineConfigError(
'The "statistical" weighting strategy is not compatible '
"with stills refinement"
)
if params.weighting_strategy.override == "constant":
params.weighting_strategy.override = "constant_stills"
weighting_strategy = ReflectionManagerFactory.get_weighting_strategy_override(
params
)
return refman(
reflections=reflections,
experiments=experiments,
nref_per_degree=params.reflections_per_degree,
max_sample_size=params.maximum_sample_size,
min_sample_size=params.minimum_sample_size,
close_to_spindle_cutoff=params.close_to_spindle_cutoff,
scan_margin=params.scan_margin,
outlier_detector=outlier_detector,
weighting_strategy_override=weighting_strategy,
)
[docs]
@staticmethod
def rotation_scan_manager(
experiments: ExperimentList,
reflections: flex.reflection_table,
params: libtbx.phil.scope_extract,
) -> ReflectionManager:
refman = ReflectionManager
## Outlier detection
if params.outlier.algorithm in ("auto", libtbx.Auto):
params.outlier.algorithm = "mcd"
if params.outlier.algorithm == "sauter_poon":
if params.outlier.sauter_poon.px_sz is libtbx.Auto:
# get this from the first panel of the first detector
params.outlier.sauter_poon.px_sz = experiments.detectors()[0][
0
].get_pixel_size()
## Weighting strategy
# check incompatible weighting strategy
if params.weighting_strategy.override in ["stills", "external_deltapsi"]:
msg = (
f'The "{params.weighting_strategy.override}" weighting strategy is not compatible with '
"scan refinement"
)
raise DialsRefineConfigError(msg)
if params.outlier.algorithm in ("null", None):
outlier_detector = None
else:
colnames = ["x_resid", "y_resid", "phi_resid"]
from dials.algorithms.refinement.outlier_detection import (
CentroidOutlierFactory,
)
outlier_detector = CentroidOutlierFactory.from_parameters_and_colnames(
params, colnames
)
weighting_strategy = ReflectionManagerFactory.get_weighting_strategy_override(
params
)
return refman(
reflections=reflections,
experiments=experiments,
nref_per_degree=params.reflections_per_degree,
max_sample_size=params.maximum_sample_size,
min_sample_size=params.minimum_sample_size,
close_to_spindle_cutoff=params.close_to_spindle_cutoff,
scan_margin=params.scan_margin,
outlier_detector=outlier_detector,
weighting_strategy_override=weighting_strategy,
)
[docs]
@staticmethod
def laue_manager(
experiments: ExperimentList,
reflections: flex.reflection_table,
params: libtbx.phil.scope_extract,
) -> LaueReflectionManager:
all_tof_experiments = False
for expt in experiments:
if expt.scan is not None and expt.scan.has_property("time_of_flight"):
all_tof_experiments = True
elif all_tof_experiments:
raise ValueError(
"Cannot refine ToF and non-ToF experiments at the same time"
)
if all_tof_experiments:
refman = TOFReflectionManager
else:
refman = LaueReflectionManager
## Outlier detection
if params.outlier.algorithm in ("auto", libtbx.Auto):
params.outlier.algorithm = "mcd"
if params.outlier.sauter_poon.px_sz is libtbx.Auto:
# get this from the first panel of the first detector
params.outlier.sauter_poon.px_sz = experiments.detectors()[0][
0
].get_pixel_size()
if params.outlier.algorithm in ("null", None):
outlier_detector = None
else:
colnames = ["x_resid", "y_resid"]
params.outlier.block_width = None
from dials.algorithms.refinement.outlier_detection import (
CentroidOutlierFactory,
)
outlier_detector = CentroidOutlierFactory.from_parameters_and_colnames(
params, colnames
)
## Weighting strategy
if params.weighting_strategy.override == "statistical":
params.weighting_strategy.override = "statistical_laue"
elif params.weighting_strategy.override == "constant":
params.weighting_strategy.override = "constant_laue"
if params.weighting_strategy.override is not None:
if params.weighting_strategy.override not in [
"constant_laue",
"statistical_laue",
]:
raise ValueError(
f"{params.weighting_strategy.override} not compatible with Laue data"
)
weighting_strategy = ReflectionManagerFactory.get_weighting_strategy_override(
params
)
return refman(
reflections=reflections,
experiments=experiments,
nref_per_degree=params.reflections_per_degree,
max_sample_size=params.maximum_sample_size,
min_sample_size=params.minimum_sample_size,
close_to_spindle_cutoff=params.close_to_spindle_cutoff,
scan_margin=params.scan_margin,
outlier_detector=outlier_detector,
weighting_strategy_override=weighting_strategy,
wavelength_weight=params.weighting_strategy.wavelength_weight,
)
[docs]
@staticmethod
def get_weighting_strategy_override(
params: libtbx.phil.scope_extract,
) -> (
weighting_strategies.StatisticalWeightingStrategy
| weighting_strategies.ConstantWeightingStrategy
):
if params.weighting_strategy.override == "statistical":
return weighting_strategies.StatisticalWeightingStrategy()
elif params.weighting_strategy.override == "stills":
return weighting_strategies.StillsWeightingStrategy(
params.weighting_strategy.delpsi_constant
)
elif params.weighting_strategy.override == "external_deltapsi":
return weighting_strategies.ExternalDelPsiWeightingStrategy()
elif params.weighting_strategy.override == "constant":
return weighting_strategies.ConstantWeightingStrategy(
*params.weighting_strategy.constants
)
elif params.weighting_strategy.override == "constant_stills":
return weighting_strategies.ConstantStillsWeightingStrategy(
*params.weighting_strategy.constants
)
elif params.weighting_strategy.override == "statistical_laue":
return weighting_strategies.LaueStatisticalWeightingStrategy(
params.weighting_strategy.wavelength_weight,
)
elif params.weighting_strategy.override == "constant_laue":
return weighting_strategies.LaueMixedWeightingStrategy(
params.weighting_strategy.wavelength_weight,
)
return None
[docs]
class ReflectionManager:
"""A class to maintain information about observed and predicted
reflections for refinement.
This new version keeps the reflections as a reflection table. Initialisation
is not complete until the ReflectionManager is paired with a target function.
Then, prediction can be done, followed by outlier rejection and any random
sampling to form the working subset."""
_weighting_strategy = weighting_strategies.StatisticalWeightingStrategy()
experiment_type = "scans"
[docs]
def __init__(
self,
reflections,
experiments,
nref_per_degree=None,
max_sample_size=None,
min_sample_size=0,
close_to_spindle_cutoff=0.02,
scan_margin=0.0,
outlier_detector=None,
weighting_strategy_override=None,
):
if len(reflections) == 0:
raise ValueError("Empty reflections table provided to ReflectionManager")
# keep track of models
self._experiments = experiments
goniometers = [e.goniometer for e in self._experiments]
self._axes = [
matrix.col(g.get_rotation_axis()) if g else None for g in goniometers
]
self._s0vecs = [matrix.col(e.beam.get_s0()) for e in self._experiments]
# unset the refinement flags (creates flags field if needed)
reflections.unset_flags(
flex.size_t_range(len(reflections)),
flex.reflection_table.flags.used_in_refinement,
)
# check that the observed beam vectors are stored: if not, compute them
n_s1_set = set_obs_s1(reflections, experiments)
if n_s1_set > 0:
logger.debug("Set scattering vectors for %d reflections", n_s1_set)
# keep track of the original indices of the reflections
reflections["iobs"] = flex.size_t_range(len(reflections))
# Check for monotonically increasing value range. If not, ref_table isn't sorted,
# and proceed to sort by id and panel. This is required for the C++ extension
# modules to allow for nlogn subselection of values used in refinement.
l_id = reflections["id"]
id0 = l_id[0]
for id_x in l_id[1:]:
if id0 <= id_x:
id0 = id_x
else:
reflections.sort("id") # Ensuring the ref_table is sorted by id
reflections.subsort(
"id", "panel"
) # Ensuring that within each sorted id block, sorting is next performed by panel
break
# set up the reflection inclusion criteria
self._close_to_spindle_cutoff = close_to_spindle_cutoff # close to spindle
self._scan_margin = DEG2RAD * scan_margin # close to the scan edge
self._outlier_detector = outlier_detector # for outlier rejection
self._nref_per_degree = nref_per_degree # random subsets
self._max_sample_size = max_sample_size # sample size ceiling
self._min_sample_size = min_sample_size # sample size floor
# exclude reflections that fail some inclusion criteria
refs_to_keep = self._id_refs_to_keep(reflections)
self._accepted_refs_size = len(refs_to_keep)
# set entering flags for all reflections
reflections.calculate_entering_flags(self._experiments)
# set observed frame numbers for all reflections if not already present
calculate_frame_numbers(reflections, self._experiments)
# reset all use flags
self.reset_accepted_reflections(reflections)
# put full list of indexed reflections aside and select only the reflections
# that were not excluded to manage
self._indexed = reflections
self._reflections = reflections.select(refs_to_keep)
# set exclusion flag for reflections that failed the tests
refs_to_excl = flex.bool(len(self._indexed), True)
refs_to_excl.set_selected(refs_to_keep, False)
self._indexed.set_flags(
refs_to_excl, self._indexed.flags.excluded_for_refinement
)
# set weights for all kept reflections
if weighting_strategy_override is not None:
self._weighting_strategy = weighting_strategy_override
self._weighting_strategy.calculate_weights(self._reflections)
# not known until the manager is finalised
self._sample_size = None
[docs]
def get_centroid_analyser(self, debug=False):
"""Create a CentroidAnalysis object for the current reflections"""
return CentroidAnalyser(self._reflections, debug=debug)
[docs]
def finalise(self, analysis=None):
"""Complete initialisation by performing outlier rejection and any
requested subsetting. If a list of results from a CentroidAnalysis
object is provided, these may be used to determine outlier rejection
block widths"""
logger.debug("Finalising the Reflection Manager")
# Initially, assume all reflections with predictions can be used
mask = self._reflections.get_flags(self._reflections.flags.predicted)
self._reflections.set_flags(mask, self._reflections.flags.used_in_refinement)
# print summary before outlier rejection
self.print_stats_on_matches()
# reset centroid_outlier flags in both the working reflections and the
# original indexed reflections
mask = self._reflections.get_flags(self._reflections.flags.centroid_outlier)
self._reflections.unset_flags(mask, self._reflections.flags.centroid_outlier)
mask = self._indexed.get_flags(self._indexed.flags.centroid_outlier)
self._indexed.unset_flags(mask, self._indexed.flags.centroid_outlier)
# outlier rejection if requested
if self._outlier_detector is None:
rejection_occurred = False
else:
if self._outlier_detector.get_block_width() is libtbx.Auto:
if analysis is None:
# without analysis available, set 18.0 degrees universally
self._outlier_detector.set_block_width(18.0)
else:
# with analysis, choose the maximum of 18 degrees or the block size
# for each experiment
widths = [e.get("block_size") for e in analysis]
widths = [max(e, 18.0) if e is not None else None for e in widths]
self._outlier_detector.set_block_width(widths)
rejection_occurred = self._outlier_detector(self._reflections)
# set the centroid_outlier flag in the original indexed reflections
ioutliers = self._reflections.get_flags(
self._reflections.flags.centroid_outlier
)
ioutliers = self._reflections["iobs"].select(ioutliers)
self._indexed.sort("iobs") # re-sort the indexed reflections
self._indexed.set_flags(ioutliers, self._indexed.flags.centroid_outlier)
msg = "Removing reflections not matched to predictions"
if rejection_occurred:
msg += " or marked as outliers"
logger.debug(msg)
# delete all reflections from the manager that do not have a prediction
# or were flagged as outliers
has_pred = self._reflections.get_flags(self._reflections.flags.predicted)
inlier = ~self._reflections.get_flags(self._reflections.flags.centroid_outlier)
self._reflections = self._reflections.select(has_pred & inlier)
self._reflections.set_flags(
flex.bool(len(self._reflections), True),
self._reflections.flags.used_in_refinement,
)
logger.info("%d reflections remain in the manager", len(self._reflections))
if len(self._reflections) == 0:
raise DialsRefineConfigError("No reflections available for refinement")
# print summary after outlier rejection
if rejection_occurred:
self.print_stats_on_matches()
# form working and free subsets
self._create_working_set()
logger.debug("Working set size = %d observations", self.get_sample_size())
def _id_refs_to_keep(self, obs_data):
"""Create a selection of observations that pass certain conditions.
This step includes rejection of reflections too close to the spindle,
reflections measured outside the scan range, rejection of the (0,0,0)
Miller index and rejection of reflections with the overload flag set.
Outlier rejection is done later."""
# first exclude reflections with miller index set to 0,0,0
sel1 = obs_data["miller_index"] != (0, 0, 0)
# exclude reflections with overloads, as these have worse centroids
sel2 = ~obs_data.get_flags(obs_data.flags.overloaded)
# combine selections
sel = sel1 & sel2
inc = flex.size_t_range(len(obs_data)).select(sel)
obs_data = obs_data.select(sel)
# Default to True to pass the following test if there is no rotation axis
# for a particular experiment
to_keep = flex.bool(len(inc), True)
for iexp, exp in enumerate(self._experiments):
axis = self._axes[iexp]
if not axis or exp.scan is None:
continue
if exp.scan.is_still():
continue
sel = obs_data["id"] == iexp
s0 = self._s0vecs[iexp]
s1 = obs_data["s1"].select(sel)
phi = obs_data["xyzobs.mm.value"].parts()[2].select(sel)
if len(phi) == 0:
raise DialsRefineConfigError(
f"Experiment id {iexp} contains no reflections"
)
# first test: reject reflections for which the parallelepiped formed
# between the gonio axis, s0 and s1 has a volume of less than the cutoff.
# Those reflections are by definition closer to the spindle-beam
# plane and for low values of the cutoff are troublesome to
# integrate anyway.
p_vol = flex.abs(s1.cross(flex.vec3_double(s1.size(), s0)).dot(axis))
passed1 = p_vol > self._close_to_spindle_cutoff
# second test: reject reflections that lie outside the scan range
passed2 = exp.scan.is_angle_valid(phi, deg=False)
# sanity check to catch a mutilated scan that does not make sense
if passed2.count(True) == 0:
raise DialsRefineConfigError(
f"Experiment id {iexp} contains no reflections with valid "
f"scan angles"
)
# combine tests so far
to_update = passed1 & passed2
# third test: reject reflections close to the centres of the first and
# last images in the scan
if self._scan_margin > 0.0:
edge1, edge2 = (e + 0.5 for e in exp.scan.get_image_range())
edge1 = exp.scan.get_angle_from_image_index(edge1, deg=False)
edge1 += self._scan_margin
edge2 = exp.scan.get_angle_from_image_index(edge2, deg=False)
edge2 -= self._scan_margin
passed3 = (edge1 <= phi) & (phi <= edge2)
# combine the last test only if there would be a reasonable number of
# reflections left for refinement
tmp = to_update
to_update = to_update & passed3
if to_update.count(True) < 40:
logger.warning(
"Too few reflections to trim centroids from the scan "
"edges. Resetting scan_margin=0.0"
)
to_update = tmp
# make selection
to_keep.set_selected(sel, to_update)
inc = inc.select(to_keep)
return inc
def _create_working_set(self):
"""Make a subset of the indices of reflections to use in refinement"""
working_isel = flex.size_t()
for iexp, exp in enumerate(self._experiments):
sel = self._reflections["id"] == iexp
isel = sel.iselection()
# refs = self._reflections.select(sel)
nrefs = sample_size = len(isel)
# set sample size according to nref_per_degree (per experiment)
if (
exp.scan
and exp.scan.has_property("oscillation")
and self._nref_per_degree
):
sequence_range_rad = exp.scan.get_oscillation_range(deg=False)
width = abs(sequence_range_rad[1] - sequence_range_rad[0]) * RAD2DEG
if self._nref_per_degree is libtbx.Auto:
# For multi-turn, set sample size to the greater of the approx nref
# in a single turn and 100 reflections per degree
turns = width / 360.0
if turns > 1:
approx_nref_1_turn = int(math.ceil(nrefs / turns))
sample_size = int(max(approx_nref_1_turn, 100.0 * width))
else:
sample_size = int(self._nref_per_degree * max(round(width), 1.0))
# adjust sample size if below the chosen limit
sample_size = max(sample_size, self._min_sample_size)
# set maximum sample size if requested
if self._max_sample_size:
sample_size = min(sample_size, self._max_sample_size)
# determine subset and collect indices
if sample_size < nrefs:
isel = isel.select(flex.random_selection(nrefs, sample_size))
working_isel.extend(isel)
# create subsets
free_sel = flex.bool(len(self._reflections), True)
free_sel.set_selected(working_isel, False)
self._free_reflections = self._reflections.select(free_sel)
self._reflections = self._reflections.select(working_isel)
[docs]
def get_accepted_refs_size(self):
"""Return the number of observations that pass inclusion criteria and
can potentially be used for refinement"""
return self._accepted_refs_size
[docs]
def get_sample_size(self):
"""Return the number of observations in the working set to be
used for refinement"""
return len(self._reflections)
[docs]
def get_indexed(self):
"""Return the reflections passed in as input"""
return self._indexed
[docs]
def get_matches(self):
"""For every observation used in refinement return (a copy of) all data"""
return self._reflections.select(
self._reflections.get_flags(self._reflections.flags.used_in_refinement)
)
[docs]
def get_free_reflections(self):
"""Return all reflections that were accepted for refinement but not chosen
in the working set"""
return self._free_reflections
[docs]
def print_stats_on_matches(self):
"""Print some basic statistics on the matches"""
l = self.get_matches()
nref = len(l)
if nref == 0:
logger.warning(
"Unable to calculate summary statistics for zero observations"
)
return
try:
x_resid = l["x_resid"]
y_resid = l["y_resid"]
phi_resid = l["phi_resid"]
w_x, w_y, w_phi = l["xyzobs.mm.weights"].parts()
except KeyError:
return
msg = (
f"\nSummary statistics for {nref} observations" + " matched to predictions:"
)
header = ["", "Min", "Q1", "Med", "Q3", "Max"]
rows = []
row_data = five_number_summary(x_resid)
rows.append(["Xc - Xo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(y_resid)
rows.append(["Yc - Yo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(phi_resid)
rows.append(["Phic - Phio (deg)"] + [f"{e * RAD2DEG:.4g}" for e in row_data])
row_data = five_number_summary(w_x)
rows.append(["X weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_y)
rows.append(["Y weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_phi)
rows.append(["Phi weights"] + [f"{e * DEG2RAD ** 2:.4g}" for e in row_data])
logger.info(msg)
logger.info(dials.util.tabulate(rows, header, numalign="right") + "\n")
[docs]
def reset_accepted_reflections(self, reflections=None):
"""Reset use flags for all observations in preparation for a new set of
predictions"""
# if not passing in reflections, take the internally managed table
if reflections is None:
reflections = self._reflections
mask = reflections.get_flags(reflections.flags.used_in_refinement)
reflections.unset_flags(mask, reflections.flags.used_in_refinement)
[docs]
def get_obs(self):
"""Get the list of managed observations"""
return self._reflections
[docs]
def filter_obs(self, sel):
"""Perform a flex array selection on the managed observations, so that
external classes can filter according to criteria not available here"""
self._reflections = self._reflections.select(sel)
return self._reflections
[docs]
def update_residuals(self):
x_obs, y_obs, phi_obs = self._reflections["xyzobs.mm.value"].parts()
x_calc, y_calc, phi_calc = self._reflections["xyzcal.mm"].parts()
self._reflections["x_resid"] = x_calc - x_obs
self._reflections["y_resid"] = y_calc - y_obs
self._reflections["phi_resid"] = phi_calc - phi_obs
[docs]
class StillsReflectionManager(ReflectionManager):
"""Overloads for a Reflection Manager that does not exclude
reflections too close to the spindle, and reports only information
about X, Y, DelPsi residuals"""
_weighting_strategy = weighting_strategies.StillsWeightingStrategy()
experiment_type = "stills"
def _id_refs_to_keep(self, obs_data):
"""Create a selection of observations that pass certain conditions.
Stills-specific version removes checks relevant only to experiments
with a rotation axis."""
# first exclude reflections with miller index set to 0,0,0
sel1 = obs_data["miller_index"] != (0, 0, 0)
# exclude reflections with overloads, as these have worse centroids
sel2 = ~obs_data.get_flags(obs_data.flags.overloaded)
# combine selections
sel = sel1 & sel2
inc = flex.size_t_range(len(obs_data)).select(sel)
return inc
[docs]
def print_stats_on_matches(self):
"""Print some basic statistics on the matches"""
l = self.get_matches()
nref = len(l)
if nref == 0:
logger.warning(
"Unable to calculate summary statistics for zero observations"
)
return
from scitbx.math import five_number_summary
try:
x_resid = l["x_resid"]
y_resid = l["y_resid"]
delpsi = l["delpsical.rad"]
w_x, w_y, _ = l["xyzobs.mm.weights"].parts()
w_delpsi = l["delpsical.weights"]
except KeyError:
return
header = ["", "Min", "Q1", "Med", "Q3", "Max"]
rows = []
row_data = five_number_summary(x_resid)
rows.append(["Xc - Xo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(y_resid)
rows.append(["Yc - Yo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(delpsi)
rows.append(["DeltaPsi (deg)"] + [f"{e * RAD2DEG:.4g}" for e in row_data])
row_data = five_number_summary(w_x)
rows.append(["X weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_y)
rows.append(["Y weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_delpsi)
rows.append(
["DeltaPsi weights"] + [f"{e * DEG2RAD ** 2:.4g}" for e in row_data]
)
msg = (
f"\nSummary statistics for {nref} observations" + " matched to predictions:"
)
logger.info(msg)
logger.info(dials.util.tabulate(rows, header) + "\n")
[docs]
class LaueReflectionManager(ReflectionManager):
_weighting_strategy = weighting_strategies.LaueStatisticalWeightingStrategy()
experiment_type = "laue"
[docs]
def __init__(
self,
reflections,
experiments,
nref_per_degree=None,
max_sample_size=None,
min_sample_size=0,
close_to_spindle_cutoff=0.02,
scan_margin=0.0,
outlier_detector=None,
weighting_strategy_override=None,
wavelength_weight=1e7,
):
if len(reflections) == 0:
raise ValueError("Empty reflections table provided to ReflectionManager")
# keep track of models
self._experiments = experiments
goniometers = [e.goniometer for e in self._experiments]
self._axes = [
matrix.col(g.get_rotation_axis()) if g else None for g in goniometers
]
# unset the refinement flags (creates flags field if needed)
reflections.unset_flags(
flex.size_t_range(len(reflections)),
flex.reflection_table.flags.used_in_refinement,
)
# check that the observed beam vectors are stored: if not, compute them
n_s1_set = set_obs_s1(reflections, experiments)
if n_s1_set > 0:
logger.debug("Set scattering vectors for %d reflections", n_s1_set)
# keep track of the original indices of the reflections
reflections["iobs"] = flex.size_t_range(len(reflections))
# Check for monotonically increasing value range. If not, ref_table isn't sorted,
# and proceed to sort by id and panel. This is required for the C++ extension
# modules to allow for nlogn subselection of values used in refinement.
l_id = reflections["id"]
id0 = l_id[0]
for id_x in l_id[1:]:
if id0 <= id_x:
id0 = id_x
else:
reflections.sort("id") # Ensuring the ref_table is sorted by id
reflections.subsort(
"id", "panel"
) # Ensuring that within each sorted id block, sorting is next performed by panel
break
# set up the reflection inclusion criteria
self._close_to_spindle_cutoff = close_to_spindle_cutoff # close to spindle
self._scan_margin = DEG2RAD * scan_margin # close to the scan edge
self._outlier_detector = outlier_detector # for outlier rejection
self._nref_per_degree = nref_per_degree # random subsets
self._max_sample_size = max_sample_size # sample size ceiling
self._min_sample_size = min_sample_size # sample size floor
# exclude reflections that fail some inclusion criteria
refs_to_keep = self._id_refs_to_keep(reflections)
self._accepted_refs_size = len(refs_to_keep)
# set entering flags for all reflections
reflections.calculate_entering_flags(self._experiments)
# reset all use flags
self.reset_accepted_reflections(reflections)
# put full list of indexed reflections aside and select only the reflections
# that were not excluded to manage
self._indexed = reflections
self._reflections = reflections.select(refs_to_keep)
# set exclusion flag for reflections that failed the tests
refs_to_excl = flex.bool(len(self._indexed), True)
refs_to_excl.set_selected(refs_to_keep, False)
self._indexed.set_flags(
refs_to_excl, self._indexed.flags.excluded_for_refinement
)
# set weights for all kept reflections
if weighting_strategy_override is not None:
self._weighting_strategy = weighting_strategy_override
else:
self._weighting_strategy = (
weighting_strategies.LaueStatisticalWeightingStrategy(wavelength_weight)
)
self._weighting_strategy.calculate_weights(self._reflections)
# not known until the manager is finalised
self._sample_size = None
def _id_refs_to_keep(self, obs_data):
"""Create a selection of observations that pass certain conditions.
Stills-specific version removes checks relevant only to experiments
with a rotation axis."""
# first exclude reflections with miller index set to 0,0,0
sel1 = obs_data["miller_index"] != (0, 0, 0)
# exclude reflections with overloads, as these have worse centroids
sel2 = ~obs_data.get_flags(obs_data.flags.overloaded)
# combine selections
sel = sel1 & sel2
inc = flex.size_t_range(len(obs_data)).select(sel)
return inc
[docs]
def print_stats_on_matches(self):
"""Print some basic statistics on the matches"""
l = self.get_matches()
nref = len(l)
if nref == 0:
logger.warning(
"Unable to calculate summary statistics for zero observations"
)
return
from scitbx.math import five_number_summary
try:
x_resid = l["x_resid"]
y_resid = l["y_resid"]
wavelength_resid = l["wavelength_resid"]
w_x, w_y, w_z = l["xyzobs.mm.weights"].parts()
except KeyError:
return
header = ["", "Min", "Q1", "Med", "Q3", "Max"]
rows = []
row_data = five_number_summary(x_resid)
rows.append(["Xc - Xo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(y_resid)
rows.append(["Yc - Yo (mm)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(wavelength_resid)
rows.append(["Wavelengthc - Wavelengtho (A)"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_x)
rows.append(["X weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_y)
rows.append(["Y weights"] + [f"{e:.4g}" for e in row_data])
row_data = five_number_summary(w_z)
rows.append(["Wavelength weights"] + [f"{e:.4g}" for e in row_data])
msg = (
f"\nSummary statistics for {nref} observations" + " matched to predictions:"
)
logger.info(msg)
logger.info(dials.util.tabulate(rows, header) + "\n")
[docs]
def update_residuals(self):
x_obs, y_obs, _ = self._reflections["xyzobs.mm.value"].parts()
x_calc, y_calc, _ = self._reflections["xyzcal.mm"].parts()
wavelength_obs = self._reflections["wavelength"]
wavelength_cal = self._reflections["wavelength_cal"]
self._reflections["x_resid"] = x_calc - x_obs
self._reflections["y_resid"] = y_calc - y_obs
self._reflections["wavelength_resid"] = wavelength_cal - wavelength_obs
self._reflections["wavelength_resid2"] = (
self._reflections["wavelength_resid"] ** 2
)
[docs]
class TOFReflectionManager(LaueReflectionManager):
[docs]
def __init__(
self,
reflections,
experiments,
nref_per_degree=None,
max_sample_size=None,
min_sample_size=0,
close_to_spindle_cutoff=0.02,
scan_margin=0.0,
outlier_detector=None,
weighting_strategy_override=None,
wavelength_weight=1e7,
):
super().__init__(
reflections=reflections,
experiments=experiments,
nref_per_degree=nref_per_degree,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
close_to_spindle_cutoff=close_to_spindle_cutoff,
scan_margin=scan_margin,
outlier_detector=outlier_detector,
weighting_strategy_override=weighting_strategy_override,
wavelength_weight=wavelength_weight,
)
tof_to_frame_interpolators = []
sample_to_source_distances = []
tof_ranges = []
for expt in self._experiments:
tof = expt.scan.get_property("time_of_flight") # (usec)
tof_range = (min(tof), max(tof))
tof_ranges.append(tof_range)
frames = list(range(len(tof)))
tof_to_frame = tof_helpers.tof_to_frame_interpolator(tof, frames)
tof_to_frame_interpolators.append(tof_to_frame)
sample_to_source_distances.append(
expt.beam.get_sample_to_source_distance() * 10**-3 # (m)
)
self._tof_to_frame_interpolators = tof_to_frame_interpolators
self._sample_to_source_distances = sample_to_source_distances
self._tof_ranges = tof_ranges
[docs]
def update_residuals(self):
x_obs, y_obs, _ = self._reflections["xyzobs.mm.value"].parts()
x_calc, y_calc, _ = self._reflections["xyzcal.mm"].parts()
wavelength_obs = self._reflections["wavelength"]
wavelength_cal = self._reflections["wavelength_cal"]
L2 = self._reflections["s1"].norms() * 10**-3
self._reflections["x_resid"] = x_calc - x_obs
self._reflections["y_resid"] = y_calc - y_obs
self._reflections["wavelength_resid"] = wavelength_cal - wavelength_obs
self._reflections["wavelength_resid2"] = (
self._reflections["wavelength_resid"] ** 2
)
frame_resid = flex.double(len(self._reflections))
frame_resid2 = flex.double(len(self._reflections))
for idx, expt in enumerate(self._experiments):
if "imageset_id" in self._reflections:
r_expt = self._reflections["imageset_id"] == idx
else:
r_expt = self._reflections["id"] == idx
L_expt = self._sample_to_source_distances[idx] + L2.select(r_expt)
tof_obs_expt = (
tof_helpers.tof_from_wavelength(L_expt, wavelength_obs.select(r_expt))
* 10**6
) # (usec)
tof_obs_expt.set_selected(
tof_obs_expt < self._tof_ranges[idx][0], self._tof_ranges[idx][0]
)
tof_obs_expt.set_selected(
tof_obs_expt > self._tof_ranges[idx][1], self._tof_ranges[idx][1]
)
tof_cal_expt = (
tof_helpers.tof_from_wavelength(L_expt, wavelength_cal.select(r_expt))
* 10**6
) # (usec)
tof_cal_expt.set_selected(
tof_cal_expt < self._tof_ranges[idx][0], self._tof_ranges[idx][0]
)
tof_cal_expt.set_selected(
tof_cal_expt > self._tof_ranges[idx][1], self._tof_ranges[idx][1]
)
tof_to_frame = self._tof_to_frame_interpolators[idx]
frame_resid_expt = flex.double(
tof_to_frame(tof_cal_expt) - tof_to_frame(tof_obs_expt)
)
frame_resid.set_selected(r_expt, frame_resid_expt)
frame_resid2.set_selected(r_expt, frame_resid_expt**2)
self._reflections["frame_resid"] = frame_resid
self._reflections["frame_resid2"] = frame_resid2