Source code for dials.algorithms.spot_finding.finder

"""
Contains implementation interface for finding spots on one or many images
"""

from __future__ import annotations

import logging
import math
import pickle
from collections.abc import Iterable

import libtbx
from dxtbx.format.image import ImageBool
from dxtbx.imageset import ImageSequence, ImageSet
from dxtbx.model import ExperimentList
from dxtbx.model.tof_helpers import wavelength_from_tof

from dials.array_family import flex
from dials.model.data import PixelList, PixelListLabeller
from dials.util import Sorry, log
from dials.util.log import rehandle_cached_records
from dials.util.mp import batch_multi_node_parallel_map
from dials.util.system import CPU_COUNT

logger = logging.getLogger(__name__)


[docs] class ExtractPixelsFromImage: """ A class to extract pixels from a single image """
[docs] def __init__( self, imageset, threshold_function, mask, region_of_interest, max_strong_pixel_fraction, compute_mean_background, ): """ Initialise the class :param imageset: The imageset to extract from :param threshold_function: The function to threshold with :param mask: The image mask :param region_of_interest: A region of interest to process :param max_strong_pixel_fraction: The maximum fraction of pixels allowed """ self.threshold_function = threshold_function self.imageset = imageset self.mask = mask self.region_of_interest = region_of_interest self.max_strong_pixel_fraction = max_strong_pixel_fraction self.compute_mean_background = compute_mean_background if self.mask is not None: detector = self.imageset.get_detector() assert len(self.mask) == len(detector)
def __call__(self, index): """ Extract strong pixels from an image :param index: The index of the image """ # Get the frame number if isinstance(self.imageset, ImageSequence): frame = self.imageset.get_array_range()[0] + index else: ind = self.imageset.indices() if len(ind) > 1: assert all(i1 + 1 == i2 for i1, i2 in zip(ind[0:-1], ind[1:-1])) frame = ind[index] # Create the list of pixel lists pixel_list = [] # Get the image and mask image = self.imageset.get_corrected_data(index) mask = self.imageset.get_mask(index) # Set the mask if self.mask is not None: assert len(self.mask) == len(mask) mask = tuple(m1 & m2 for m1, m2 in zip(mask, self.mask)) logger.debug( f"Number of masked pixels for image {index}: {sum(m.count(False) for m in mask)}", ) # Add the images to the pixel lists num_strong = 0 average_background = 0 for i_panel, (im, mk) in enumerate(zip(image, mask)): if self.imageset.is_marked_for_rejection(index): threshold_mask = flex.bool(im.accessor(), False) elif self.region_of_interest is not None: x0, x1, y0, y1 = self.region_of_interest height, width = im.all() assert x0 < x1, "x0 < x1" assert y0 < y1, "y0 < y1" assert x0 >= 0, "x0 >= 0" assert y0 >= 0, "y0 >= 0" assert x1 <= width, "x1 <= width" assert y1 <= height, "y1 <= height" im_roi = im[y0:y1, x0:x1] mk_roi = mk[y0:y1, x0:x1] tm_roi = self.threshold_function.compute_threshold( im_roi, mk_roi, imageset=self.imageset, i_panel=i_panel, region_of_interest=self.region_of_interest, ) threshold_mask = flex.bool(im.accessor(), False) threshold_mask[y0:y1, x0:x1] = tm_roi else: threshold_mask = self.threshold_function.compute_threshold( im, mk, imageset=self.imageset, i_panel=i_panel ) # Add the pixel list plist = PixelList(frame, im, threshold_mask) pixel_list.append(plist) # Get average background if self.compute_mean_background: background = im.as_1d().select((mk & ~threshold_mask).as_1d()) average_background += flex.mean(background) # Add to the spot count num_strong += len(plist) # Make average background average_background /= len(image) # Check total number of strong pixels if self.max_strong_pixel_fraction < 1: num_image = 0 for im in image: num_image += len(im) max_strong = int(math.ceil(self.max_strong_pixel_fraction * num_image)) if num_strong > max_strong: raise RuntimeError( f""" The number of strong pixels found ({num_strong}) is greater than the maximum allowed ({max_strong}). Try changing spot finding parameters """ ) # Print some info if self.compute_mean_background: logger.info( f"Found {num_strong} strong pixels on image {frame + 1} with average background {average_background}", ) else: logger.info(f"Found {num_strong} strong pixels on image {frame + 1}") # Return the result return pixel_list
[docs] class ExtractPixelsFromImage2DNoShoeboxes(ExtractPixelsFromImage): """ A class to extract pixels from a single image """
[docs] def __init__( self, imageset, threshold_function, mask, region_of_interest, max_strong_pixel_fraction, compute_mean_background, min_spot_size, max_spot_size, filter_spots, ): """ Initialise the class :param imageset: The imageset to extract from :param threshold_function: The function to threshold with :param mask: The image mask :param region_of_interest: A region of interest to process :param max_strong_pixel_fraction: The maximum fraction of pixels allowed """ super().__init__( imageset, threshold_function, mask, region_of_interest, max_strong_pixel_fraction, compute_mean_background, ) # Save some stuff self.min_spot_size = min_spot_size self.max_spot_size = max_spot_size self.filter_spots = filter_spots
def __call__(self, index): """ Extract strong pixels from an image :param index: The index of the image """ # Initialise the pixel labeller num_panels = len(self.imageset.get_detector()) pixel_labeller = [PixelListLabeller() for p in range(num_panels)] # Call the super function result = super().__call__(index) # Add pixel lists to the labeller assert len(pixel_labeller) == len(result), "Inconsistent size" for plabeller, plist in zip(pixel_labeller, result): plabeller.add(plist) # Create shoeboxes from pixel list reflections, _ = pixel_list_to_reflection_table( self.imageset, pixel_labeller, filter_spots=self.filter_spots, min_spot_size=self.min_spot_size, max_spot_size=self.max_spot_size, write_hot_pixel_mask=False, ) # Delete the shoeboxes del reflections["shoeboxes"] # Return the reflections return [reflections]
[docs] class ExtractSpotsParallelTask: """ Execute the spot finder task in parallel We need this external class so that we can pickle it for cluster jobs """
[docs] def __init__(self, function): """ Initialise with the function to call """ self.function = function
def __call__(self, task): """ Call the function with th task and save the IO """ log.config_simple_cached() result = self.function(task) handlers = logging.getLogger("dials").handlers assert len(handlers) == 1, "Invalid number of logging handlers" return result, handlers[0].records
[docs] def pixel_list_to_shoeboxes( imageset: ImageSet, pixel_labeller: Iterable[PixelListLabeller], min_spot_size: int, max_spot_size: int, write_hot_pixel_mask: bool, ) -> tuple[flex.shoebox, tuple[flex.size_t, ...]]: """Convert a pixel list to shoeboxes""" # Extract the pixel lists into a list of reflections shoeboxes = flex.shoebox() spotsizes = flex.size_t() hotpixels = tuple(flex.size_t() for i in range(len(imageset.get_detector()))) if isinstance(imageset, ImageSequence): twod = imageset.get_scan().is_still() else: twod = True for i, (p, hp) in enumerate(zip(pixel_labeller, hotpixels)): if p.num_pixels() > 0: creator = flex.PixelListShoeboxCreator( p, i, # panel 0, # zrange twod, # twod min_spot_size, # min_pixels max_spot_size, # max_pixels write_hot_pixel_mask, ) shoeboxes.extend(creator.result()) spotsizes.extend(creator.spot_size()) hp.extend(creator.hot_pixels()) logger.info(f"\nExtracted {len(shoeboxes)} spots") # Get the unallocated spots and print some info selection = shoeboxes.is_allocated() shoeboxes = shoeboxes.select(selection) ntoosmall = (spotsizes < min_spot_size).count(True) ntoolarge = (spotsizes > max_spot_size).count(True) assert ntoosmall + ntoolarge == selection.count(False) logger.info(f"Removed {ntoosmall} spots with size < {min_spot_size} pixels") logger.info(f"Removed {ntoolarge} spots with size > {max_spot_size} pixels") # Return the shoeboxes return shoeboxes, hotpixels
[docs] def shoeboxes_to_reflection_table( imageset: ImageSet, shoeboxes: flex.shoebox, filter_spots ) -> flex.reflection_table: """Filter shoeboxes and create reflection table""" # Calculate the spot centroids centroid = shoeboxes.centroid_valid() logger.info(f"Calculated {len(shoeboxes)} spot centroids") # Calculate the spot intensities intensity = shoeboxes.summed_intensity() logger.info(f"Calculated {len(shoeboxes)} spot intensities") # Create the observations observed = flex.observation(shoeboxes.panels(), centroid, intensity) # Filter the reflections and select only the desired spots flags = filter_spots( None, sweep=imageset, observations=observed, shoeboxes=shoeboxes ) observed = observed.select(flags) shoeboxes = shoeboxes.select(flags) # Return as a reflection list return flex.reflection_table(observed, shoeboxes)
[docs] def pixel_list_to_reflection_table( imageset: ImageSet, pixel_labeller: Iterable[PixelListLabeller], filter_spots, min_spot_size: int, max_spot_size: int, write_hot_pixel_mask: bool, ) -> tuple[flex.shoebox, tuple[flex.size_t, ...]]: """Convert pixel list to reflection table""" shoeboxes, hot_pixels = pixel_list_to_shoeboxes( imageset, pixel_labeller, min_spot_size=min_spot_size, max_spot_size=max_spot_size, write_hot_pixel_mask=write_hot_pixel_mask, ) # Setup the reflection table converter return ( shoeboxes_to_reflection_table(imageset, shoeboxes, filter_spots=filter_spots), hot_pixels, )
[docs] class ExtractSpots: """ Class to find spots in an image and extract them into shoeboxes. """
[docs] def __init__( self, threshold_function=None, mask=None, region_of_interest=None, max_strong_pixel_fraction=0.1, compute_mean_background=False, mp_method=None, mp_nproc=1, mp_njobs=1, mp_chunksize=1, min_spot_size=1, max_spot_size=20, filter_spots=None, no_shoeboxes_2d=False, min_chunksize=50, write_hot_pixel_mask=False, ): """ Initialise the class with the strategy :param threshold_function: The image thresholding strategy :param mask: The mask to use :param mp_method: The multi processing method :param nproc: The number of processors :param max_strong_pixel_fraction: The maximum number of strong pixels """ # Set the required strategies self.threshold_function = threshold_function self.mask = mask self.mp_method = mp_method self.mp_chunksize = mp_chunksize self.mp_nproc = mp_nproc self.mp_njobs = mp_njobs self.max_strong_pixel_fraction = max_strong_pixel_fraction self.compute_mean_background = compute_mean_background self.region_of_interest = region_of_interest self.min_spot_size = min_spot_size self.max_spot_size = max_spot_size self.filter_spots = filter_spots self.no_shoeboxes_2d = no_shoeboxes_2d self.min_chunksize = min_chunksize self.write_hot_pixel_mask = write_hot_pixel_mask
def __call__(self, imageset): """ Find the spots in the imageset :param imageset: The imageset to process :return: The list of spot shoeboxes """ if not self.no_shoeboxes_2d: return self._find_spots(imageset) else: return self._find_spots_2d_no_shoeboxes(imageset) def _compute_chunksize(self, nimg, nproc, min_chunksize): """ Compute the chunk size for a given number of images and processes """ chunksize = int(math.ceil(nimg / nproc)) remainder = nimg % (chunksize * nproc) test_chunksize = chunksize - 1 while test_chunksize >= min_chunksize: test_remainder = nimg % (test_chunksize * nproc) if test_remainder <= remainder: chunksize = test_chunksize remainder = test_remainder test_chunksize -= 1 return chunksize def _find_spots(self, imageset): """ Find the spots in the imageset :param imageset: The imageset to process :return: The list of spot shoeboxes """ # Change the number of processors if necessary mp_nproc = self.mp_nproc mp_njobs = self.mp_njobs if mp_nproc is libtbx.Auto: mp_nproc = CPU_COUNT logger.info(f"Setting nproc={mp_nproc}") if mp_nproc * mp_njobs > len(imageset): mp_nproc = min(mp_nproc, len(imageset)) mp_njobs = int(math.ceil(len(imageset) / mp_nproc)) mp_method = self.mp_method mp_chunksize = self.mp_chunksize if mp_chunksize is libtbx.Auto: mp_chunksize = self._compute_chunksize( len(imageset), mp_njobs * mp_nproc, self.min_chunksize ) logger.info(f"Setting chunksize={mp_chunksize}") len_by_nproc = int(math.floor(len(imageset) / (mp_njobs * mp_nproc))) if mp_chunksize > len_by_nproc: mp_chunksize = len_by_nproc if mp_chunksize == 0: mp_chunksize = 1 assert mp_nproc > 0, "Invalid number of processors" assert mp_njobs > 0, "Invalid number of jobs" assert mp_njobs == 1 or mp_method is not None, "Invalid cluster method" assert mp_chunksize > 0, "Invalid chunk size" # The extract pixels function function = ExtractPixelsFromImage( imageset=imageset, threshold_function=self.threshold_function, mask=self.mask, max_strong_pixel_fraction=self.max_strong_pixel_fraction, compute_mean_background=self.compute_mean_background, region_of_interest=self.region_of_interest, ) # The indices to iterate over indices = list(range(len(imageset))) # Initialise the pixel labeller num_panels = len(imageset.get_detector()) pixel_labeller = [PixelListLabeller() for p in range(num_panels)] # Do the processing logger.info("Extracting strong pixels from images") if mp_njobs > 1: logger.info( f" Using {mp_method} with {mp_njobs} parallel job(s) and {mp_nproc} processes per node\n" ) else: logger.info(f" Using multiprocessing with {mp_nproc} parallel job(s)\n") if mp_nproc > 1 or mp_njobs > 1: def process_output(result): rehandle_cached_records(result[1]) assert len(pixel_labeller) == len(result[0]), "Inconsistent size" for plabeller, plist in zip(pixel_labeller, result[0]): plabeller.add(plist) batch_multi_node_parallel_map( func=ExtractSpotsParallelTask(function), iterable=indices, nproc=mp_nproc, njobs=mp_njobs, cluster_method=mp_method, chunksize=mp_chunksize, callback=process_output, ) else: for task in indices: result = function(task) assert len(pixel_labeller) == len(result), "Inconsistent size" for plabeller, plist in zip(pixel_labeller, result): plabeller.add(plist) result.clear() # Create shoeboxes from pixel list return pixel_list_to_reflection_table( imageset, pixel_labeller, filter_spots=self.filter_spots, min_spot_size=self.min_spot_size, max_spot_size=self.max_spot_size, write_hot_pixel_mask=self.write_hot_pixel_mask, ) def _find_spots_2d_no_shoeboxes(self, imageset): """ Find the spots in the imageset :param imageset: The imageset to process :return: The list of spot shoeboxes """ # Change the number of processors if necessary mp_nproc = self.mp_nproc mp_njobs = self.mp_njobs if mp_nproc * mp_njobs > len(imageset): mp_nproc = min(mp_nproc, len(imageset)) mp_njobs = int(math.ceil(len(imageset) / mp_nproc)) mp_method = self.mp_method mp_chunksize = self.mp_chunksize if mp_chunksize == libtbx.Auto: mp_chunksize = self._compute_chunksize( len(imageset), mp_njobs * mp_nproc, self.min_chunksize ) logger.info(f"Setting chunksize={mp_chunksize}") len_by_nproc = int(math.floor(len(imageset) / (mp_njobs * mp_nproc))) if mp_chunksize > len_by_nproc: mp_chunksize = len_by_nproc assert mp_nproc > 0, "Invalid number of processors" assert mp_njobs > 0, "Invalid number of jobs" assert mp_njobs == 1 or mp_method is not None, "Invalid cluster method" assert mp_chunksize > 0, "Invalid chunk size" # The extract pixels function function = ExtractPixelsFromImage2DNoShoeboxes( imageset=imageset, threshold_function=self.threshold_function, mask=self.mask, max_strong_pixel_fraction=self.max_strong_pixel_fraction, compute_mean_background=self.compute_mean_background, region_of_interest=self.region_of_interest, min_spot_size=self.min_spot_size, max_spot_size=self.max_spot_size, filter_spots=self.filter_spots, ) # The indices to iterate over indices = list(range(len(imageset))) # The resulting reflections reflections = flex.reflection_table() # Do the processing logger.info("Extracting strong spots from images") if mp_njobs > 1: logger.info( f" Using {mp_method} with {mp_njobs} parallel job(s) and {mp_nproc} processes per node\n" ) else: logger.info(f" Using multiprocessing with {mp_nproc} parallel job(s)\n") if mp_nproc > 1 or mp_njobs > 1: def process_output(result): for message in result[1]: logger.log(message.levelno, message.msg) reflections.extend(result[0][0]) result[0][0] = None batch_multi_node_parallel_map( func=ExtractSpotsParallelTask(function), iterable=indices, nproc=mp_nproc, njobs=mp_njobs, cluster_method=mp_method, chunksize=mp_chunksize, callback=process_output, ) else: for task in indices: reflections.extend(function(task)[0]) # Return the reflections return reflections, None
[docs] class SpotFinder: """ A class to do spot finding and filtering. """
[docs] def __init__( self, threshold_function=None, mask=None, region_of_interest=None, max_strong_pixel_fraction=0.1, compute_mean_background=False, mp_method=None, mp_nproc=1, mp_njobs=1, mp_chunksize=1, mask_generator=None, filter_spots=None, scan_range=None, write_hot_mask=True, hot_mask_prefix="hot_mask", min_spot_size=1, max_spot_size=20, no_shoeboxes_2d=False, min_chunksize=50, is_stills=False, ): """ Initialise the class. :param find_spots: The spot finding algorithm :param filter_spots: The spot filtering algorithm :param scan_range: The scan range to find spots over :param is_stills: [ADVANCED] Force still-handling of experiment ID remapping for dials.stills_process. """ # Set the filter and some other stuff self.threshold_function = threshold_function self.mask = mask self.region_of_interest = region_of_interest self.max_strong_pixel_fraction = max_strong_pixel_fraction self.compute_mean_background = compute_mean_background self.mask_generator = mask_generator self.filter_spots = filter_spots self.scan_range = scan_range self.write_hot_mask = write_hot_mask self.hot_mask_prefix = hot_mask_prefix self.min_spot_size = min_spot_size self.max_spot_size = max_spot_size self.mp_method = mp_method self.mp_chunksize = mp_chunksize self.mp_nproc = mp_nproc self.mp_njobs = mp_njobs self.no_shoeboxes_2d = no_shoeboxes_2d self.min_chunksize = min_chunksize self.is_stills = is_stills
[docs] def find_spots(self, experiments: ExperimentList) -> flex.reflection_table: """ Do spotfinding for a set of experiments. Args: experiments: The experiment list to process Returns: A new reflection table of found reflections """ # Loop through all the experiments and get the unique imagesets imagesets = [] for experiment in experiments: if experiment.imageset not in imagesets: imagesets.append(experiment.imageset) # Loop through all the imagesets and find the strong spots reflections = flex.reflection_table() for j, imageset in enumerate(imagesets): # Find the strong spots in the sequence logger.info( "-" * 80 + f"\nFinding strong spots in imageset {j}\n" + "-" * 80 ) table, hot_mask = self._find_spots_in_imageset(imageset) # Fix up the experiment ID's now table["id"] = flex.int(table.nrows(), -1) for i, experiment in enumerate(experiments): if experiment.imageset is not imageset: continue if not self.is_stills and experiment.scan: z0, z1 = experiment.scan.get_array_range() z = table["xyzobs.px.value"].parts()[2] table["id"].set_selected((z > z0) & (z < z1), i) if experiment.identifier: table.experiment_identifiers()[i] = experiment.identifier else: table["id"] = flex.int(table.nrows(), j) if experiment.identifier: table.experiment_identifiers()[j] = experiment.identifier missed = table["id"] == -1 assert ( missed.count(True) == 0 ), f"Failed to remap {missed.count(True)} experiment IDs" reflections.extend(table) # Write a hot pixel mask if self.write_hot_mask: if not imageset.external_lookup.mask.data.empty(): for m1, m2 in zip(hot_mask, imageset.external_lookup.mask.data): m1 &= m2.data() imageset.external_lookup.mask.data = ImageBool(hot_mask) else: imageset.external_lookup.mask.data = ImageBool(hot_mask) imageset.external_lookup.mask.filename = "%s_%d.pickle" % ( self.hot_mask_prefix, i, ) # Write the hot mask with open(imageset.external_lookup.mask.filename, "wb") as outfile: pickle.dump(hot_mask, outfile, protocol=pickle.HIGHEST_PROTOCOL) # Set the strong spot flag reflections.set_flags( flex.size_t_range(len(reflections)), reflections.flags.strong ) reflections.is_overloaded(experiments) reflections = self._post_process(reflections) return reflections
def _find_spots_in_imageset(self, imageset): """ Do the spot finding. :param imageset: The imageset to process :return: The observed spots """ # The input mask mask = self.mask_generator(imageset) if self.mask is not None: mask = tuple(m1 & m2 for m1, m2 in zip(mask, self.mask)) # Set the spot finding algorithm extract_spots = ExtractSpots( threshold_function=self.threshold_function, mask=mask, region_of_interest=self.region_of_interest, max_strong_pixel_fraction=self.max_strong_pixel_fraction, compute_mean_background=self.compute_mean_background, mp_method=self.mp_method, mp_nproc=self.mp_nproc, mp_njobs=self.mp_njobs, mp_chunksize=self.mp_chunksize, min_spot_size=self.min_spot_size, max_spot_size=self.max_spot_size, filter_spots=self.filter_spots, no_shoeboxes_2d=self.no_shoeboxes_2d, min_chunksize=self.min_chunksize, write_hot_pixel_mask=self.write_hot_mask, ) # Get the max scan range if isinstance(imageset, ImageSequence): max_scan_range = imageset.get_array_range() else: max_scan_range = (0, len(imageset)) # Get list of scan ranges if not self.scan_range or self.scan_range[0] is None: scan_range = [(max_scan_range[0] + 1, max_scan_range[1])] else: scan_range = self.scan_range # Get spots from bits of scan hot_pixels = tuple(flex.size_t() for i in range(len(imageset.get_detector()))) reflections = flex.reflection_table() for j0, j1 in scan_range: # Make sure we were asked to do something sensible if j1 < j0: raise Sorry("Scan range must be in ascending order") elif j0 < max_scan_range[0] or j1 > max_scan_range[1]: raise Sorry( f"Scan range must be within image range {max_scan_range[0] + 1}..{max_scan_range[1]}" ) logger.info(f"\nFinding spots in image {j0} to {j1}...") j0 -= 1 if isinstance(imageset, ImageSequence): j0 -= imageset.get_array_range()[0] j1 -= imageset.get_array_range()[0] if len(imageset) == 1: r, h = extract_spots(imageset) else: r, h = extract_spots(imageset[j0:j1]) reflections.extend(r) if h is not None: for h1, h2 in zip(hot_pixels, h): h1.extend(h2) # Find hot pixels hot_mask = self._create_hot_mask(imageset, hot_pixels) # Return as a reflection list return reflections, hot_mask def _create_hot_mask(self, imageset, hot_pixels): """ Find hot pixels in images """ # Write the hot mask if self.write_hot_mask: # Create the hot pixel mask hot_mask = tuple( flex.bool(flex.grid(p.get_image_size()[::-1]), True) for p in imageset.get_detector() ) num_hot = 0 if hot_pixels: for hp, hm in zip(hot_pixels, hot_mask): for i in range(len(hp)): hm[hp[i]] = False num_hot += len(hp) logger.info(f"Found {num_hot} possible hot pixel(s)") else: hot_mask = None # Return the hot mask return hot_mask def _post_process(self, reflections): return reflections
[docs] class TOFSpotFinder(SpotFinder): """ Class to do spot finding tailored to time of flight experiments """
[docs] def __init__( self, experiments, threshold_function=None, mask=None, region_of_interest=None, max_strong_pixel_fraction=0.1, compute_mean_background=False, mp_method=None, mp_nproc=1, mp_njobs=1, mp_chunksize=1, mask_generator=None, filter_spots=None, scan_range=None, write_hot_mask=True, hot_mask_prefix="hot_mask", min_spot_size=1, max_spot_size=20, min_chunksize=50, ): super().__init__( threshold_function=threshold_function, mask=mask, region_of_interest=region_of_interest, max_strong_pixel_fraction=max_strong_pixel_fraction, compute_mean_background=compute_mean_background, mp_method=mp_method, mp_nproc=mp_nproc, mp_njobs=mp_njobs, mp_chunksize=mp_chunksize, mask_generator=mask_generator, filter_spots=filter_spots, scan_range=scan_range, write_hot_mask=write_hot_mask, hot_mask_prefix=hot_mask_prefix, min_spot_size=min_spot_size, max_spot_size=max_spot_size, no_shoeboxes_2d=False, min_chunksize=min_chunksize, is_stills=False, ) self.experiments = experiments
def _correct_centroid_tof(self, reflections): """ Sets the centroid of the spot to the peak position along the time of flight, as this tends to more accurately represent the true centroid for spallation sources. """ x, y, tof = reflections["xyzobs.px.value"].parts() peak_x, peak_y, peak_tof = reflections["shoebox"].peak_coordinates().parts() reflections["xyzobs.px.value"] = flex.vec3_double(x, y, peak_tof) return reflections def _post_process(self, reflections): reflections = self._correct_centroid_tof(reflections) # Filter any reflections outside of the tof range for i, expt in enumerate(self.experiments): _, _, frame = reflections["xyzobs.px.value"].parts() tof_frame_range = (0, len(expt.scan.get_property("time_of_flight")) - 1) if "imageset_id" in reflections: sel_expt = reflections["imageset_id"] == i else: sel_expt = reflections["id"] == i sel = sel_expt & ( (frame > tof_frame_range[1]) | (frame < tof_frame_range[0]) ) reflections = reflections.select(~sel) n_rows = reflections.nrows() panel_numbers = flex.size_t(reflections["panel"]) reflections["L1"] = flex.double(n_rows) reflections["wavelength"] = flex.double(n_rows) reflections["s0"] = flex.vec3_double(n_rows) reflections.centroid_px_to_mm(self.experiments) for i, expt in enumerate(self.experiments): if "imageset_id" in reflections: sel_expt = reflections["imageset_id"] == i else: sel_expt = reflections["id"] == i L0 = expt.beam.get_sample_to_source_distance() * 10**-3 # (m) unit_s0 = expt.beam.get_unit_s0() for i_panel in range(len(expt.detector)): sel = sel_expt & (panel_numbers == i_panel) x, y, tof = reflections["xyzobs.mm.value"].select(sel).parts() px, py, frame = reflections["xyzobs.px.value"].select(sel).parts() s1 = expt.detector[i_panel].get_lab_coord(flex.vec2_double(x, y)) L1 = s1.norms() wavelengths = wavelength_from_tof(L0 + L1 * 10**-3, tof * 10**-6) s0s = flex.vec3_double( unit_s0[0] / wavelengths, unit_s0[1] / wavelengths, unit_s0[2] / wavelengths, ) reflections["wavelength"].set_selected(sel, wavelengths) reflections["s0"].set_selected(sel, s0s) reflections["L1"].set_selected(sel, L1) return reflections