"""Methods for symmetry determination from partial datasets.
This module implements the methods of `Gildea, R. J. & Winter, G. (2018).
Acta Cryst. D74, 405-410 <https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
from __future__ import annotations
import json
import logging
import math
from typing import List, Optional
import numpy as np
from sklearn.neighbors import NearestNeighbors
import iotbx.phil
from cctbx import miller, sgtbx
from cctbx.sgtbx.lattice_symmetry import metric_subgroups
from libtbx import Auto
from scitbx import matrix
from scitbx.array_family import flex
import dials.util
import dials.util.system
from dials.algorithms.indexing.symmetry import find_matching_symmetry
from dials.algorithms.symmetry import median_unit_cell, symmetry_base
from dials.algorithms.symmetry.cosym import engine as cosym_engine
from dials.algorithms.symmetry.cosym import target
from dials.algorithms.symmetry.laue_group import ScoreCorrelationCoefficient
from dials.util.observer import Subject
from dials.util.reference import intensities_from_reference_file
logger = logging.getLogger(__name__)
# these parameters are only required if running the cosym procedure in symmetry analysis mode.
symmetry_analysis_phil = """
lattice_group = None
.type = space_group
.short_caption = "Lattice group"
space_group = None
.type = space_group
.short_caption = "Space group"
lattice_symmetry_max_delta = 5.0
.type = float(value_min=0)
.short_caption = "Lattice symmetry max δ"
best_monoclinic_beta = True
.type = bool
.help = "If True, then for monoclinic centered cells, I2 will be preferred over C2 if"
"it gives a less oblique cell (i.e. smaller beta angle)."
.short_caption = "Best monoclinic β"
"""
# these parameters are required for the core cosym procedure for e.g. non-symmetry based isomorphism analysis
cosym_scope = """
min_reflections = 10
.type = int(value_min=0)
.help = "The minimum number of merged reflections per experiment required to perform cosym analysis."
seed = 230
.type = int(value_min=0)
normalisation = kernel quasi *ml_iso ml_aniso
.type = choice
d_min = Auto
.type = float(value_min=0)
min_i_mean_over_sigma_mean = 4
.type = float(value_min=0)
.short_caption = "Minimum <I>/<σ>"
min_cc_half = 0.6
.type = float(value_min=0, value_max=1)
.short_caption = "Minimum CC½"
dimensions = Auto
.type = int(value_min=2)
.short_caption = "Dimensions"
use_curvatures = True
.type = bool
.short_caption = "Use curvatures"
weights = *count standard_error
.type = choice
.short_caption = "Weights"
.help = "If not None, a weights matrix is used in the cosym procedure."
"weights=count uses the number of reflections used to calculate a pairwise correlation coefficient as its weight"
"weights=standard_error uses the reciprocal of the standard error as the weight. The standard error is given by"
"the sqrt of (1-CC*2)/(n-2), where (n-2) are the degrees of freedom in a pairwise CC calculation."
cc_weights = None sigma
.type = choice
.help = "If not None, a weighted cc-half formula is used for calculating pairwise correlation coefficients and degrees of"
"freedom in the cosym procedure."
"weights=sigma uses the intensity uncertainties to perform inverse variance weighting during the cc calculation."
min_pairs = 3
.type = int(value_min=1)
.help = 'Minimum number of pairs for inclusion of correlation coefficient in calculation of Rij matrix.'
.short_caption = "Minimum number of pairs"
minimization
.short_caption = "Minimization"
{
engine = *scitbx scipy
.type = choice
.short_caption = "Engine"
max_iterations = 100
.type = int(value_min=0)
.short_caption = "Maximum number of iterations"
max_calls = None
.type = int(value_min=0)
.short_caption = "Maximum number of calls"
}
nproc = Auto
.type = int(value_min=1)
.help = "Number of processes"
"""
phil_scope = iotbx.phil.parse(
"""\
%s
%s
"""
% (cosym_scope, symmetry_analysis_phil),
process_includes=True,
)
[docs]
class CosymAnalysis(symmetry_base, Subject):
"""Perform cosym analysis.
Perform cosym analysis on the input intensities using the methods of
`Gildea, R. J. & Winter, G. (2018). Acta Cryst. D74, 405-410
<https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
[docs]
def __init__(
self,
intensities,
params,
seed_dataset: Optional[int] = None,
apply_sigma_correction=True,
):
"""Initialise a CosymAnalysis object.
Args:
intensities (cctbx.miller.array): The intensities on which to perform
cosym analysis.
params (libtbx.phil.scope_extract): Parameters for the analysis.
seed_dataset (int): The index into the intensities list to use when
choosing a seed dataset for the reindexing analysis (the x,y,z reindex
mode will be used for this dataset).
If None, a high density cluster point is chosen.
"""
self.seed_dataset = seed_dataset
if self.seed_dataset:
self.seed_dataset = int(self.seed_dataset)
assert (
0 <= seed_dataset < len(intensities)
), "cosym_analysis: seed_dataset parameter must be an integer that can be used to index the intensities list"
max_id = len(intensities) - 1
super().__init__(
intensities,
normalisation=params.normalisation,
lattice_symmetry_max_delta=params.lattice_symmetry_max_delta,
d_min=params.d_min,
min_i_mean_over_sigma_mean=params.min_i_mean_over_sigma_mean,
min_cc_half=params.min_cc_half,
relative_length_tolerance=None,
absolute_angle_tolerance=None,
best_monoclinic_beta=params.best_monoclinic_beta,
apply_sigma_correction=apply_sigma_correction,
)
Subject.__init__(
self, events=["optimised", "analysed_symmetry", "analysed_clusters"]
)
# remove those with less than min_reflections after setup.
if params.min_reflections:
to_remove = []
min_id = 0
histy = flex.histogram(
self.dataset_ids.as_double(),
min_id - 0.5,
max_id + 0.5,
n_slots=max_id + 1 - min_id,
)
vals = histy.slots()
for i, _ in enumerate(range(min_id, max_id + 1)):
n = vals[i]
if n < params.min_reflections:
to_remove.append(i)
if to_remove:
logger.info(
f"Removing datasets {', '.join(str(i) for i in to_remove)} with < {params.min_reflections} reflections"
)
sel = flex.bool(self.intensities.size(), True)
for i in to_remove:
sel.set_selected(self.dataset_ids == i, False)
self.intensities = self.intensities.select(sel)
self.dataset_ids = self.dataset_ids.select(sel)
self.params = params
if self.params.space_group is not None:
def _map_space_group_to_input_cell(intensities, space_group):
from cctbx.sgtbx.bravais_types import bravais_lattice
best_subgroup = find_matching_symmetry(
intensities.unit_cell(),
space_group,
best_monoclinic_beta=str(bravais_lattice(group=space_group))
== "mI",
)
cb_op_inp_best = best_subgroup["cb_op_inp_best"]
best_subsym = best_subgroup["best_subsym"]
cb_op_best_primitive = (
best_subsym.change_of_basis_op_to_primitive_setting()
)
sg_cb_op_inp_primitive = (
space_group.info().change_of_basis_op_to_primitive_setting()
)
sg_primitive = space_group.change_basis(sg_cb_op_inp_primitive)
sg_best = sg_primitive.change_basis(cb_op_best_primitive.inverse())
# best_subgroup above is the bravais type, so create thin copy here with the
# user-input space group instead
best_subsym = best_subsym.customized_copy(
space_group_info=sg_best.info()
)
best_subgroup = {
"subsym": best_subsym.change_basis(cb_op_inp_best.inverse()),
"best_subsym": best_subsym,
"cb_op_inp_best": cb_op_inp_best,
}
intensities = intensities.customized_copy(
space_group_info=sg_best.change_basis(
cb_op_inp_best.inverse()
).info()
)
return intensities, best_subgroup
self.intensities, self.best_subgroup = _map_space_group_to_input_cell(
self.intensities, self.params.space_group.group()
)
self.best_subgroup["cb_op_inp_best"] = (
self.best_subgroup["cb_op_inp_best"] * self.cb_op_inp_min
)
self.input_space_group = self.intensities.space_group()
# ensure still unique after mapping - merge equivalents in the higher symmetry
new_intensities = None
new_dataset_ids = flex.int([])
for d in set(self.dataset_ids):
sel = self.dataset_ids == d
these_i = self.intensities.select(sel)
these_merged = these_i.merge_equivalents().array()
if not new_intensities:
new_intensities = these_merged
else:
new_intensities = new_intensities.concatenate(these_merged)
new_dataset_ids.extend(flex.int(these_merged.size(), d))
self.intensities = new_intensities
self.dataset_ids = new_dataset_ids
else:
self.input_space_group = None
if self.params.lattice_group is not None:
tmp_intensities, _ = _map_space_group_to_input_cell(
self.intensities, self.params.lattice_group.group()
)
self.params.lattice_group = tmp_intensities.space_group_info()
# N.B. currently only multiprocessing used if cc_weights=sigma
if self.params.nproc is Auto:
if self.params.cc_weights == "sigma":
params.nproc = dials.util.system.CPU_COUNT
logger.info("Setting nproc={}".format(params.nproc))
else:
params.nproc = 1
def _intialise_target(self):
if self.params.dimensions is Auto:
dimensions = None
else:
dimensions = self.params.dimensions
if self.params.lattice_group is not None:
self.lattice_group = (
self.params.lattice_group.group()
.build_derived_patterson_group()
.info()
.primitive_setting()
.group()
)
self.target = target.Target(
self.intensities,
self.dataset_ids.as_numpy_array(),
min_pairs=self.params.min_pairs,
lattice_group=self.lattice_group,
dimensions=dimensions,
weights=self.params.weights,
cc_weights=self.params.cc_weights,
nproc=self.params.nproc,
)
def _determine_dimensions(self, dims_to_test, outlier_rejection=False):
logger.info("=" * 80)
logger.info("\nAutomatic determination of number of dimensions for analysis")
dimensions = []
functional = []
for dim in range(1, dims_to_test + 1):
logger.debug("Testing dimension: %i", dim)
self.target.set_dimensions(dim)
max_calls = self.params.minimization.max_calls
self._optimise(
self.params.minimization.engine,
max_iterations=self.params.minimization.max_iterations,
max_calls=min(20, max_calls) if max_calls else max_calls,
)
dimensions.append(dim)
functional.append(
self.target.compute_functional_score_for_dimension_assessment(
self.minimizer.x, outlier_rejection
)
)
# Find the elbow point of the curve, in the same manner as that used by
# distl spotfinder for resolution method 1 (Zhang et al 2006).
# See also dials/algorithms/spot_finding/per_image_analysis.py
x = np.array(dimensions)
y = np.array(functional)
slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
p_m = slopes.argmin()
x1 = matrix.col((x[p_m], y[p_m]))
x2 = matrix.col((x[-1], y[-1]))
gaps = []
v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()
for i in range(p_m, len(x)):
x0 = matrix.col((x[i], y[i]))
r = x1 - x0
g = abs(v.dot(r))
gaps.append(g)
p_g = np.array(gaps).argmax()
x_g = x[p_g + p_m]
logger.info(
dials.util.tabulate(
zip(dimensions, functional), headers=("Dimensions", "Functional")
)
)
logger.info("Best number of dimensions: %i", x_g)
if int(x_g) < 2:
logger.info(
"As a minimum of 2-dimensions is required, dimensions have been set to 2."
)
self.target.set_dimensions(2)
else:
self.target.set_dimensions(int(x_g))
logger.info("Using %i dimensions for analysis", self.target.dim)
return dimensions, functional
[docs]
def run(self):
self._intialise_target()
if self.params.dimensions is Auto and self.target.dim != 2:
self._determine_dimensions(self.target.dim)
self._optimise(
self.params.minimization.engine,
max_iterations=self.params.minimization.max_iterations,
max_calls=self.params.minimization.max_calls,
)
self._principal_component_analysis()
self._analyse_symmetry()
@Subject.notify_event(event="optimised")
def _optimise(self, engine, max_iterations=None, max_calls=None):
np.random.seed(self.params.seed)
NN = len(set(self.dataset_ids))
n_sym_ops = len(self.target.sym_ops)
coords = np.random.rand(NN * n_sym_ops * self.target.dim)
if engine == "scitbx":
self.minimizer = cosym_engine.minimize_scitbx_lbfgs(
self.target,
coords,
use_curvatures=self.params.use_curvatures,
max_iterations=max_iterations,
max_calls=max_calls,
)
else:
self.minimizer = cosym_engine.minimize_scipy(
self.target,
coords,
method="L-BFGS-B",
max_iterations=max_iterations,
max_calls=max_calls,
)
self.coords = self.minimizer.x.reshape(
self.target.dim, NN * n_sym_ops
).transpose()
def _principal_component_analysis(self):
# Perform PCA
from sklearn.decomposition import PCA
pca = PCA().fit(self.coords)
logger.info("Principal component analysis:")
logger.info(
"Explained variance: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_])
)
logger.info(
"Explained variance ratio: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_ratio_])
)
self.explained_variance = pca.explained_variance_
self.explained_variance_ratio = pca.explained_variance_ratio_
if self.target.dim > 3:
pca.n_components = 3
self.coords_reduced = pca.fit_transform(self.coords)
@Subject.notify_event(event="analysed_symmetry")
def _analyse_symmetry(self):
sym_ops = [sgtbx.rt_mx(s).new_denominators(1, 12) for s in self.target.sym_ops]
if not self.input_space_group:
self._symmetry_analysis = SymmetryAnalysis(
self.coords, sym_ops, self.subgroups, self.cb_op_inp_min
)
logger.info(str(self._symmetry_analysis))
self.best_solution = self._symmetry_analysis.best_solution
self.best_subgroup = self.best_solution.subgroup
else:
self.best_solution = None
self._symmetry_analysis = None
cosets = sgtbx.cosets.left_decomposition(
self.target._lattice_group,
self.best_subgroup["subsym"].space_group().build_derived_acentric_group(),
)
self.reindexing_ops = self._reindexing_ops(self.coords, sym_ops, cosets)
def _reindexing_ops(
self,
coords: np.ndarray,
sym_ops: List[sgtbx.rt_mx],
cosets: sgtbx.cosets.left_decomposition,
) -> List[sgtbx.change_of_basis_op]:
"""Identify the reindexing operator for each dataset.
Args:
coords (np.ndarray):
A flattened list of the N-dimensional vectors, i.e. coordinates in
the first dimension are stored first, followed by the coordinates in
the second dimension, etc.
sym_ops (List[sgtbx.rt_mx]): List of cctbx.sgtbx.rt_mx used for the cosym
symmetry analysis
cosets (sgtbx.cosets.left_decomposition): The left coset decomposition of the
lattice group with respect to the proposed Patterson group
Returns:
List[sgtbx.change_of_basis_op]: A list of reindexing operators corresponding
to each dataset.
"""
reindexing_ops = []
n_datasets = len(set(self.dataset_ids))
n_sym_ops = len(sym_ops)
coord_ids = np.arange(n_datasets * n_sym_ops)
dataset_ids = coord_ids % n_datasets
if self.seed_dataset is not None:
# if seed dataset was specified, use the reindexing op xyz as seed
sel = np.where(dataset_ids == self.seed_dataset)
xis = np.array([coords[sel][0]])
else:
# choose a high density point as seed
X = coords
nbrs = NearestNeighbors(
n_neighbors=min(11, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors(X)
average_distance = np.array([dist[1:].mean() for dist in distances])
i = average_distance.argmin()
xis = np.array([X[i]])
coordstr = ",".join(str(round(i, 4)) for i in xis[0])
logger.debug(f"Coordinate of cluster seed dataset: {coordstr}")
for j in range(n_datasets):
sel = np.where(dataset_ids == j)
X = coords[sel]
# Find nearest neighbour in cosine-space to the current cluster centroid
nbrs = NearestNeighbors(
n_neighbors=min(1, len(X)), algorithm="brute", metric="cosine"
).fit(X)
distances, indices = nbrs.kneighbors([xis.mean(axis=0)])
k = indices[0][0]
xis = np.append(xis, [X[k]], axis=0)
for partition in cosets.partitions:
if sym_ops[k] in partition:
cb_op = sgtbx.change_of_basis_op(partition[0]).new_denominators(
self.cb_op_inp_min
)
reindexing_ops.append(
(
self.cb_op_inp_min.inverse() * cb_op * self.cb_op_inp_min
).as_xyz()
)
break
return reindexing_ops
[docs]
def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {
"input_symmetry": {
"hall_symbol": self.input_intensities[0]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.median_unit_cell.parameters(),
},
"cb_op_inp_min": self.cb_op_inp_min.as_xyz(),
"min_cell_symmetry": {
"hall_symbol": self.intensities.space_group().type().hall_symbol(),
"unit_cell": self.intensities.unit_cell().parameters(),
},
"lattice_point_group": self.lattice_group.type().hall_symbol(),
}
if self._symmetry_analysis is not None:
d.update(self._symmetry_analysis.as_dict())
return d
[docs]
def as_json(self, filename=None, indent=2):
"""Return a json representation of the results.
Args:
filename (str): Optional filename to export the json representation of
the results.
indent (int): The indent level for pretty-printing of the json. If ``None``
is the most compact representation.
Returns:
str:
"""
d = self.as_dict()
json_str = json.dumps(d, indent=indent)
if filename:
with open(filename, "w") as f:
f.write(json_str)
return json.dumps(d, indent=indent)
[docs]
class SymmetryAnalysis:
[docs]
def __init__(self, coords, sym_ops, subgroups, cb_op_inp_min):
import scipy.spatial.distance as ssd
self.subgroups = subgroups
self.cb_op_inp_min = cb_op_inp_min
n_datasets = coords.shape[0] // len(sym_ops)
dist_mat = ssd.pdist(coords, metric="cosine")
cos_angle = 1 - ssd.squareform(dist_mat)
self._sym_ops_cos_angle = {}
for dataset_id in range(n_datasets):
for ref_sym_op_id in range(len(sym_ops)):
ref_idx = n_datasets * ref_sym_op_id + dataset_id
for sym_op_id in range(ref_sym_op_id + 1, len(sym_ops)):
op = sym_ops[ref_sym_op_id].inverse().multiply(sym_ops[sym_op_id])
op = op.new_denominators(1, 12)
comp_idx = n_datasets * sym_op_id + dataset_id
self._sym_ops_cos_angle.setdefault(op, [])
self._sym_ops_cos_angle[op].append(cos_angle[ref_idx, comp_idx])
self._score_symmetry_elements()
self._score_laue_groups()
def _score_symmetry_elements(self):
self.sym_op_scores = {}
for op, cos_angle in self._sym_ops_cos_angle.items():
cc_true = 1
cc = np.mean(cos_angle)
score = ScoreSymmetryElement(cc, sigma_cc=0.1, cc_true=cc_true)
score.sym_op = op
self.sym_op_scores[op] = score
def _score_laue_groups(self):
subgroup_scores = [
ScoreSubGroup(subgrp, list(self.sym_op_scores.values()))
for subgrp in self.subgroups.result_groups
]
total_likelihood = sum(score.likelihood for score in subgroup_scores)
for score in subgroup_scores:
score.likelihood /= total_likelihood
self.subgroup_scores = sorted(
subgroup_scores, key=lambda score: score.likelihood, reverse=True
)
# The 'confidence' scores are derived from the total probability of the best
# solution p_best and that for the next best solution p_next:
# confidence = [p_best * (p_best - p_next)]^1/2.
for i, score in enumerate(self.subgroup_scores[:-1]):
next_score = self.subgroup_scores[i + 1]
if score.likelihood > 0 and next_score.likelihood > 0:
lgc = score.likelihood * (score.likelihood - next_score.likelihood)
confidence = abs(lgc) ** 0.5
if lgc < 0:
confidence = -confidence
score.confidence = confidence
self.best_solution = self.subgroup_scores[0]
[docs]
@staticmethod
def sym_ops_table(d):
header = ("likelihood", "Z-CC", "CC", "", "Operator")
rows = [header]
for score in d["sym_op_scores"]:
rows.append(
(
f"{score['likelihood']:.3f}",
f"{score['z_cc']:.2f}",
f"{score['cc']:.2f}",
score["stars"],
str(sgtbx.rt_mx(str(score["operator"])).r().info()),
)
)
return rows
[docs]
@staticmethod
def subgroups_table(d):
header = (
"Patterson group",
"",
"Likelihood",
"NetZcc",
"Zcc+",
"Zcc-",
"delta",
"Reindex operator",
)
rows = [header]
for score in d["subgroup_scores"]:
rows.append(
(
str(
sgtbx.space_group(
hall_symbol=str(score["patterson_group"])
).info()
),
score["stars"],
f"{score['likelihood']:.3f}",
f"{score['z_cc_net']: .2f}",
f"{score['z_cc_for']: .2f}",
f"{score['z_cc_against']: .2f}",
f"{score['max_angular_difference']:.1f}",
str(sgtbx.change_of_basis_op(str(score["cb_op"]))),
)
)
return rows
[docs]
@staticmethod
def summary_table(d):
best_subgroup = d["subgroup_scores"][0]
cell = ", ".join(f"{i:.3f}" for i in best_subgroup["unit_cell"])
return (
(
"Best solution",
str(
sgtbx.space_group(
hall_symbol=str(best_subgroup["patterson_group"])
).info()
),
),
("Unit cell", cell),
("Reindex operator", best_subgroup["cb_op"]),
("Laue group probability", f"{best_subgroup['likelihood']:.3f}"),
("Laue group confidence", f"{best_subgroup['confidence']:.3f}"),
)
def __str__(self):
"""Return a string representation of the results.
Returns:
str:
"""
output = []
output.append("Scoring individual symmetry elements")
d = self.as_dict()
output.append(dials.util.tabulate(self.sym_ops_table(d), headers="firstrow"))
output.append("Scoring all possible sub-groups")
output.append(dials.util.tabulate(self.subgroups_table(d), headers="firstrow"))
output.append(
"Best solution: %s"
% self.best_solution.subgroup["best_subsym"].space_group_info()
)
cell = ", ".join(
f"{i:.3f}"
for i in self.best_solution.subgroup["best_subsym"].unit_cell().parameters()
)
output.append(f"Unit cell: {cell}")
output.append(
"Reindex operator: %s"
% (self.best_solution.subgroup["cb_op_inp_best"] * self.cb_op_inp_min)
)
output.append(f"Laue group probability: {self.best_solution.likelihood:.3f}")
output.append(f"Laue group confidence: {self.best_solution.confidence:.3f}")
return "\n".join(output)
[docs]
def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {"cb_op_inp_min": self.cb_op_inp_min.as_xyz()}
d["sym_op_scores"] = []
for rt_mx, score in self.sym_op_scores.items():
dd = score.as_dict()
dd["operator"] = rt_mx.as_xyz()
d["sym_op_scores"].append(dd)
d["subgroup_scores"] = []
for score in self.subgroup_scores:
dd = score.as_dict()
dd["cb_op"] = (
sgtbx.change_of_basis_op(dd["cb_op"]) * self.cb_op_inp_min
).as_xyz()
d["subgroup_scores"].append(dd)
return d
[docs]
class ScoreSymmetryElement:
"""Analyse intensities for presence of a given symmetry operation.
1) Calculate the probability of observing this CC if the sym op is present,
p(CC; S), modelled by a Cauchy distribution centred on cc_true and width
gamma = sigma_cc.
2) Calculate the probability of observing this CC if the sym op is
NOT present, p(CC; !S).
3) Calculate the likelihood of symmetry element being present,
p(S; CC) = p(CC; S) / (p(CC; S) + p(CC; !S))
See appendix A1 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
[docs]
def __init__(self, cc, sigma_cc, cc_true):
"""Initialise a ScoreSymmetryElement object.
Args:
cc (float): the correlation coefficient for this symmetry element
sigma_cc (float): the estimated error in the correlation coefficient
cc_true (float): the expected value of CC if the symmetry element is present,
E(CC; S)
"""
self.cc = cc
self.sigma_cc = sigma_cc
self.z_cc = self.cc / self.sigma_cc
score_cc = ScoreCorrelationCoefficient(self.cc, self.sigma_cc, cc_true)
self.p_cc_given_s = score_cc.p_cc_given_s
self.p_cc_given_not_s = score_cc.p_cc_given_not_s
self.likelihood = score_cc.p_s_given_cc
@property
def stars(self):
# define stars attribute - used mainly for output
if self.likelihood > 0.9:
stars = "***"
elif self.likelihood > 0.7:
stars = "**"
elif self.likelihood > 0.5:
stars = "*"
else:
stars = ""
return stars
[docs]
def as_dict(self):
"""Return a dictionary representation of the symmetry element scoring.
The dictionary will contain the following keys:
- likelihood: The likelihood of the symmetry element being present
- z_cc: The Z-score for the correlation coefficient
- cc: The correlation coefficient for the symmetry element
- operator: The xyz representation of the symmetry element
Returns:
dict:
"""
return {
"likelihood": self.likelihood,
"z_cc": self.z_cc,
"cc": self.cc,
"stars": self.stars,
}
[docs]
class ScoreSubGroup:
"""Score the probability of a given subgroup being the true subgroup.
1) Calculates overall Zcc scores for symmetry elements present/absent from
the subgroup.
2) Calculates the overall likelihood for this subgroup.
See appendix A2 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
[docs]
def __init__(self, subgroup, sym_op_scores):
"""Initialise a ScoreSubGroup object.
Args:
subgroup (dict): A dictionary describing the subgroup as generated by
:class:`cctbx.sgtbx.lattice_symmetry.metric_subgroups`.
sym_op_scores (list): A list of :class:`ScoreSymmetryElement` objects for each
symmetry element possibly in the lattice symmetry.
"""
# Combined correlation coefficients for symmetry operations
# present/absent from subgroup
self.subgroup = subgroup
patterson_group = subgroup["subsym"].space_group()
# Overall Zcc scores for symmetry elements present/absent from subgroup
self.z_cc_for = 0
self.z_cc_against = 0
n_for = 0
n_against = 0
PL_for = 0
PL_against = 0
power = 2
for score in sym_op_scores:
if score.sym_op in patterson_group:
self.z_cc_for += score.z_cc**power
n_for += 1
PL_for += math.log(score.p_cc_given_s)
else:
self.z_cc_against += score.z_cc**power
n_against += 1
PL_against += math.log(score.p_cc_given_not_s)
# Overall likelihood for this subgroup
self.likelihood = math.exp(PL_for + PL_against)
if n_against > 0:
self.z_cc_against = (self.z_cc_against / n_against) ** (1 / power)
if n_for > 0:
self.z_cc_for = (self.z_cc_for / n_for) ** (1 / power)
self.z_cc_net = self.z_cc_for - self.z_cc_against
self.confidence = 0
def __str__(self):
"""Return a string representation of the subgroup scores.
Returns:
str:
"""
return "{} {:.3f} {:.2f} {:.2f} {:.2f}".format(
self.subgroup["best_subsym"].space_group_info(),
self.likelihood,
self.z_cc_net,
self.z_cc_for,
self.z_cc_against,
)
@property
def stars(self):
if self.likelihood > 0.8:
stars = "***"
elif self.likelihood > 0.6:
stars = "**"
elif self.likelihood > 0.4:
stars = "*"
else:
stars = ""
return stars
[docs]
def as_dict(self):
"""Return a dictionary representation of the subgroup scoring.
The dictionary will contain the following keys:
- patterson_group: The current subgroup
- likelihood: The likelihood of the subgroup being correct
- confidence: The confidence of the subgroup being correct
- z_cc_for: The combined Z-scores for all symmetry elements present in the
subgroup
- z_cc_against: The combined Z-scores for all symmetry elements present in
the lattice group but not in the subgroup
- z_cc_net: The net Z-score, i.e. z_cc_for - z_cc_against
- max_angular_difference: The maximum angular difference between the
symmetrised unit cell and the P1 unit cell.
- cb_op: The change of basis operation from the input unit cell to the
'best' unit cell.
Returns:
dict:
"""
return {
"patterson_group": self.subgroup["best_subsym"]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.subgroup["best_subsym"].unit_cell().parameters(),
"likelihood": self.likelihood,
"confidence": self.confidence,
"z_cc_net": self.z_cc_net,
"z_cc_for": self.z_cc_for,
"z_cc_against": self.z_cc_against,
"max_angular_difference": self.subgroup["max_angular_difference"],
"cb_op": f"{self.subgroup['cb_op_inp_best']}",
"stars": self.stars,
}
[docs]
def change_of_basis_op_to_best_cell(
experiments,
max_delta,
relative_length_tolerance,
absolute_angle_tolerance,
best_subgroup,
):
"""
Compute change of basis op to map experiments from P1 cell to the best cell
that matches the best subgroup
"""
median_cell = median_unit_cell(experiments)
groups = metric_subgroups(
experiments[0]
.crystal.get_crystal_symmetry()
.customized_copy(unit_cell=median_cell),
max_delta,
enforce_max_delta_for_generated_two_folds=True,
)
match = None
for g in groups.result_groups:
if (
g["best_subsym"]
.unit_cell()
.is_similar_to(
best_subgroup["best_subsym"].unit_cell(),
relative_length_tolerance=relative_length_tolerance,
absolute_angle_tolerance=absolute_angle_tolerance,
)
) and (
sgtbx.lattice_symmetry_group(g["best_subsym"].unit_cell(), max_delta=0)
== sgtbx.lattice_symmetry_group(
best_subgroup["best_subsym"].unit_cell(), max_delta=0
)
):
match = g
break
if not match:
raise RuntimeError(
"Unable to determine reindexing operator from minumum cells to best cell.\n"
+ "This may be fixed by increasing relative_length_tolerance or absolute_angle_tolerance."
)
cb_op = match["cb_op_inp_best"]
return cb_op