Click here to go to the corresponding page for the latest version of DIALS
Source code for dials.algorithms.symmetry.cosym
"""Methods for symmetry determination from partial datasets.
This module implements the methods of `Gildea, R. J. & Winter, G. (2018).
Acta Cryst. D74, 405-410 <https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
from __future__ import absolute_import, division, print_function
import copy
import json
import logging
import math
from collections import OrderedDict
import dials.util
import iotbx.phil
from cctbx import sgtbx
from dials.algorithms.indexing.symmetry import find_matching_symmetry
from dials.algorithms.symmetry.cosym import target
from dials.algorithms.symmetry.cosym import engine
from dials.algorithms.symmetry import symmetry_base
from dials.algorithms.symmetry.laue_group import ScoreCorrelationCoefficient
from dials.util.observer import Subject
from libtbx import Auto
from scitbx import matrix
from scitbx.array_family import flex
logger = logging.getLogger(__name__)
phil_scope = iotbx.phil.parse(
"""\
normalisation = kernel quasi *ml_iso ml_aniso
.type = choice
d_min = Auto
.type = float(value_min=0)
min_i_mean_over_sigma_mean = 4
.type = float(value_min=0)
min_cc_half = 0.6
.type = float(value_min=0, value_max=1)
lattice_group = None
.type = space_group
space_group = None
.type = space_group
lattice_symmetry_max_delta = 5.0
.type = float(value_min=0)
dimensions = Auto
.type = int(value_min=2)
use_curvatures = True
.type = bool
weights = count standard_error
.type = choice
min_pairs = 3
.type = int(value_min=1)
.help = 'Minimum number of pairs for inclusion of correlation coefficient in calculation of Rij matrix.'
termination_params {
max_iterations = 100
.type = int(value_min=0)
max_calls = None
.type = int(value_min=0)
traditional_convergence_test = True
.type = bool
traditional_convergence_test_eps = 1
.type = float
drop_convergence_test_n_test_points=5
.type = int(value_min=2)
drop_convergence_test_max_drop_eps=1.e-5
.type = float(value_min=0)
drop_convergence_test_iteration_coefficient=2
.type = float(value_min=1)
}
cluster {
method = dbscan bisect minimize_divide agglomerative *seed
.type = choice
n_clusters = auto
.type = int(value_min=1)
dbscan {
eps = 0.5
.type = float(value_min=0)
min_samples = 5
.type = int(value_min=1)
}
bisect {
axis = 0
.type = int(value_min=0)
}
seed {
min_silhouette_score = 0.2
.type = float(value_min=-1, value_max=1)
}
}
nproc = 1
.type = int(value_min=1)
.help = "The number of processes to use."
"""
)
[docs]class CosymAnalysis(symmetry_base, Subject):
"""Peform cosym analysis.
Peform cosym analysis on the input intensities using the methods of
`Gildea, R. J. & Winter, G. (2018). Acta Cryst. D74, 405-410
<https://doi.org/10.1107/S2059798318002978>`_ for
determination of Patterson group symmetry from sparse multi-crystal data sets in
the presence of an indexing ambiguity.
"""
def __init__(self, intensities, params):
"""Initialise a CosymAnalysis object.
Args:
intensities (cctbx.miller.array): The intensities on which to perform
cosym anaylsis.
params (libtbx.phil.scope_extract): Parameters for the analysis.
"""
super(CosymAnalysis, self).__init__(
intensities,
normalisation=params.normalisation,
lattice_symmetry_max_delta=params.lattice_symmetry_max_delta,
d_min=params.d_min,
min_i_mean_over_sigma_mean=params.min_i_mean_over_sigma_mean,
min_cc_half=params.min_cc_half,
relative_length_tolerance=None,
absolute_angle_tolerance=None,
)
Subject.__init__(
self, events=["optimised", "analysed_symmetry", "analysed_clusters"]
)
self.params = params
if self.params.space_group is not None:
def _map_space_group_to_input_cell(intensities, space_group):
best_subgroup = find_matching_symmetry(
intensities.unit_cell(), space_group
)
cb_op_inp_best = best_subgroup["cb_op_inp_best"]
best_subsym = best_subgroup["best_subsym"]
cb_op_best_ref = best_subsym.change_of_basis_op_to_reference_setting()
ref_subsym = best_subsym.change_basis(cb_op_best_ref)
cb_op_ref_primitive = (
ref_subsym.change_of_basis_op_to_primitive_setting()
)
sg_cb_op_inp_primitive = (
space_group.info().change_of_basis_op_to_primitive_setting()
)
sg_primitive = space_group.change_basis(sg_cb_op_inp_primitive)
sg_best = sg_primitive.change_basis(
(cb_op_ref_primitive * cb_op_best_ref).inverse()
)
# best_subgroup above is the bravais type, so create thin copy here with the
# user-input space group instead
best_subgroup = {
"best_subsym": best_subsym.customized_copy(
space_group_info=sg_best.info()
),
"cb_op_inp_best": cb_op_inp_best,
}
intensities = intensities.customized_copy(
space_group_info=sg_best.change_basis(
cb_op_inp_best.inverse()
).info()
)
return intensities, best_subgroup
self.intensities, self.best_subgroup = _map_space_group_to_input_cell(
self.intensities, self.params.space_group.group()
)
self.input_space_group = self.intensities.space_group()
else:
self.input_space_group = None
if self.params.lattice_group is not None:
tmp_intensities, _ = _map_space_group_to_input_cell(
self.intensities, self.params.lattice_group.group()
)
self.params.lattice_group = tmp_intensities.space_group_info()
def _intialise_target(self):
if self.params.dimensions is Auto:
dimensions = None
else:
dimensions = self.params.dimensions
if self.params.lattice_group is not None:
self.lattice_group = (
self.params.lattice_group.group()
.build_derived_patterson_group()
.info()
.primitive_setting()
.group()
)
self.target = target.Target(
self.intensities,
self.dataset_ids,
min_pairs=self.params.min_pairs,
lattice_group=self.lattice_group,
dimensions=dimensions,
weights=self.params.weights,
nproc=self.params.nproc,
)
def _determine_dimensions(self):
if self.params.dimensions is Auto and self.target.dim == 2:
self.params.dimensions = 2
elif self.params.dimensions is Auto:
logger.info("=" * 80)
logger.info(
"\nAutomatic determination of number of dimensions for analysis"
)
dimensions = []
functional = []
for dim in range(1, self.target.dim + 1):
self.target.set_dimensions(dim)
self._optimise()
dimensions.append(dim)
functional.append(self.minimizer.f)
# Find the elbow point of the curve, in the same manner as that used by
# distl spotfinder for resolution method 1 (Zhang et al 2006).
# See also dials/algorithms/spot_finding/per_image_analysis.py
x = flex.double(dimensions)
y = flex.double(functional)
slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
p_m = flex.min_index(slopes)
x1 = matrix.col((x[p_m], y[p_m]))
x2 = matrix.col((x[-1], y[-1]))
gaps = flex.double()
v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()
for i in range(p_m, len(x)):
x0 = matrix.col((x[i], y[i]))
r = x1 - x0
g = abs(v.dot(r))
gaps.append(g)
p_g = flex.max_index(gaps)
x_g = x[p_g + p_m]
logger.info(
dials.util.tabulate(
zip(dimensions, functional), headers=("Dimensions", "Functional")
)
)
logger.info("Best number of dimensions: %i" % x_g)
self.target.set_dimensions(int(x_g))
logger.info("Using %i dimensions for analysis" % self.target.dim)
[docs] def run(self):
self._intialise_target()
self._determine_dimensions()
self._optimise()
self._principal_component_analysis()
self._analyse_symmetry()
self._cluster_analysis()
@Subject.notify_event(event="optimised")
def _optimise(self):
NN = len(self.input_intensities)
dim = self.target.dim
n_sym_ops = len(self.target.get_sym_ops())
coords = flex.random_double(NN * n_sym_ops * dim)
import scitbx.lbfgs
tp = self.params.termination_params
termination_params = scitbx.lbfgs.termination_parameters(
traditional_convergence_test=tp.traditional_convergence_test,
traditional_convergence_test_eps=tp.traditional_convergence_test_eps,
drop_convergence_test_n_test_points=tp.drop_convergence_test_n_test_points,
drop_convergence_test_max_drop_eps=tp.drop_convergence_test_max_drop_eps,
drop_convergence_test_iteration_coefficient=tp.drop_convergence_test_iteration_coefficient,
# min_iterations=tp.min_iterations,
max_iterations=tp.max_iterations,
max_calls=tp.max_calls,
)
M = engine.lbfgs_with_curvs(
self.target,
coords,
use_curvatures=self.params.use_curvatures,
termination_params=termination_params,
)
self.minimizer = M
coords = M.x.deep_copy()
coords.reshape(flex.grid(dim, NN * n_sym_ops))
coords.matrix_transpose_in_place()
self.coords = coords
def _principal_component_analysis(self):
# Perform PCA
from sklearn.decomposition import PCA
X = self.coords.as_numpy_array()
pca = PCA().fit(X)
logger.info("Principal component analysis:")
logger.info(
"Explained variance: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_])
)
logger.info(
"Explained variance ratio: "
+ ", ".join(["%.2g" % v for v in pca.explained_variance_ratio_])
)
self.explained_variance = pca.explained_variance_
self.explained_variance_ratio = pca.explained_variance_ratio_
if self.target.dim > 3:
pca.n_components = 3
x_reduced = pca.fit_transform(X)
import numpy
self.coords_reduced = flex.double(numpy.ascontiguousarray(x_reduced))
@Subject.notify_event(event="analysed_symmetry")
def _analyse_symmetry(self):
if self.input_space_group is not None:
self.best_solution = None
self._symmetry_analysis = None
return
sym_ops = [
sgtbx.rt_mx(s).new_denominators(1, 12) for s in self.target.get_sym_ops()
]
self._symmetry_analysis = SymmetryAnalysis(
self.coords, sym_ops, self.subgroups, self.cb_op_inp_min
)
logger.info(str(self._symmetry_analysis))
self.best_solution = self._symmetry_analysis.best_solution
self.best_subgroup = self.best_solution.subgroup
cosets = sgtbx.cosets.left_decomposition(
self.lattice_group, self.best_solution.subgroup["subsym"].space_group()
)
self.params.cluster.n_clusters = len(cosets.partitions)
def _space_group_for_dataset(self, dataset_id, sym_ops):
if self.input_space_group is not None:
sg = copy.deepcopy(self.input_space_group)
else:
sg = sgtbx.space_group()
ref_sym_op_id = None
ref_cluster_id = None
for sym_op_id in range(len(sym_ops)):
i_cluster = self.cluster_labels[
len(self.input_intensities) * sym_op_id + dataset_id
]
if i_cluster < 0:
continue
if ref_sym_op_id is None:
ref_sym_op_id = sym_op_id
ref_cluster_id = i_cluster
continue
op = sym_ops[ref_sym_op_id].inverse().multiply(sym_ops[sym_op_id])
if i_cluster == ref_cluster_id:
sg.expand_smx(op.new_denominators(1, 12))
return sg.make_tidy()
def _reindexing_ops_for_dataset(self, dataset_id, sym_ops, cosets):
reindexing_ops = {}
# Number of clusters in labels, ignoring noise if present.
n_clusters = len(set(self.cluster_labels)) - (
1 if -1 in self.cluster_labels else 0
)
for i_cluster in range(n_clusters):
isel = (self.cluster_labels == i_cluster).iselection()
dataset_ids = isel % len(self.input_intensities)
sel = (dataset_ids == dataset_id).iselection()
for s in sel:
sym_op_id = isel[s] // len(self.input_intensities)
for partition in cosets.partitions:
if sym_ops[sym_op_id] in partition:
if i_cluster not in reindexing_ops:
cb_op = sgtbx.change_of_basis_op(
partition[0]
).new_denominators(self.cb_op_inp_min)
reindexing_ops[i_cluster] = (
self.cb_op_inp_min.inverse()
* cb_op
* self.cb_op_inp_min
).as_xyz()
return reindexing_ops
@Subject.notify_event(event="analysed_clusters")
def _cluster_analysis(self):
if self.params.cluster.n_clusters == 1:
self.cluster_labels = flex.double(self.coords.all()[0])
else:
self.cluster_labels = self._do_clustering(self.params.cluster.method)
sym_ops = [
sgtbx.rt_mx(s).new_denominators(1, 12) for s in self.target.get_sym_ops()
]
reindexing_ops = {}
space_groups = {}
for dataset_id in range(len(self.input_intensities)):
space_groups[dataset_id] = self._space_group_for_dataset(
dataset_id, sym_ops
)
cosets = sgtbx.cosets.left_decomposition(
self.target._lattice_group, space_groups[dataset_id]
)
reindexing_ops[dataset_id] = self._reindexing_ops_for_dataset(
dataset_id, sym_ops, cosets
)
self.space_groups = space_groups
self.reindexing_ops = reindexing_ops
def _do_clustering(self, method):
if method == "dbscan":
clustering = self._dbscan_clustering
elif method == "bisect":
clustering = self._bisect_clustering
elif method == "minimize_divide":
clustering = self._minimize_divide_clustering
elif method == "agglomerative":
clustering = self._agglomerative_clustering
elif method == "seed":
clustering = self._seed_clustering
return clustering()
def _dbscan_clustering(self):
from sklearn.preprocessing import StandardScaler
X = self.coords_reduced.as_numpy_array()
X = StandardScaler().fit_transform(X)
# Perform cluster analysis
from sklearn.cluster import DBSCAN
db = DBSCAN(
eps=self.params.cluster.dbscan.eps,
min_samples=self.params.cluster.dbscan.min_samples,
).fit(X)
import numpy as np
return flex.int(db.labels_.astype(np.int32))
def _bisect_clustering(self):
assert self.params.cluster.n_clusters in (2, Auto)
axis = self.params.cluster.bisect.axis
assert axis < self.coords_reduced.all()[1]
x = self.coords_reduced[:, axis : axis + 1].as_1d()
cluster_labels = flex.int(x.size(), 0)
cluster_labels.set_selected(x > 0, 1)
return cluster_labels
def _minimize_divide_clustering(self):
assert self.params.cluster.n_clusters in (2, Auto)
x = self.coords_reduced[:, :1].as_1d()
y = self.coords_reduced[:, 1:2].as_1d()
from cctbx.merging.brehm_diederichs import minimize_divide
selection = minimize_divide(x, y).plus_minus()
cluster_labels = flex.int(x.size(), 0)
cluster_labels.set_selected(selection, 1)
return cluster_labels
def _agglomerative_clustering(self):
X = self.coords.as_numpy_array()
# Perform cluster analysis
from sklearn.cluster import AgglomerativeClustering
import numpy as np
model = AgglomerativeClustering(
n_clusters=self.params.cluster.n_clusters,
linkage="average",
affinity="cosine",
)
model.fit(X)
return flex.int(model.labels_.astype(np.int32))
def _seed_clustering(self):
from dials.algorithms.symmetry.cosym.seed_clustering import seed_clustering
clustering = seed_clustering(
self.coords,
len(self.input_intensities),
len(self.target.get_sym_ops()),
min_silhouette_score=self.params.cluster.seed.min_silhouette_score,
n_clusters=self.params.cluster.n_clusters,
)
return clustering.cluster_labels
[docs] def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {
"input_symmetry": {
"hall_symbol": self.input_intensities[0]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.median_unit_cell.parameters(),
},
"cb_op_inp_min": self.cb_op_inp_min.as_xyz(),
"min_cell_symmetry": {
"hall_symbol": self.intensities.space_group().type().hall_symbol(),
"unit_cell": self.intensities.unit_cell().parameters(),
},
"lattice_point_group": self.lattice_group.type().hall_symbol(),
}
if self._symmetry_analysis is not None:
d.update(self._symmetry_analysis.as_dict())
return d
[docs] def as_json(self, filename=None, indent=2):
"""Return a json representation of the results.
Args:
filename (str): Optional filename to export the json representation of
the results.
indent (int): The indent level for pretty-printing of the json. If ``None``
is the most compact representation.
Returns:
str:
"""
d = self.as_dict()
json_str = json.dumps(d, indent=indent)
if filename:
with open(filename, "w") as f:
f.write(json_str)
return json.dumps(d, indent=indent)
[docs]class SymmetryAnalysis(object):
def __init__(self, coords, sym_ops, subgroups, cb_op_inp_min):
import scipy.spatial.distance as ssd
self.subgroups = subgroups
self.cb_op_inp_min = cb_op_inp_min
X = coords.as_numpy_array()
n_datasets = coords.all()[0] // len(sym_ops)
dist_mat = ssd.pdist(X, metric="cosine")
cos_angle = 1 - ssd.squareform(dist_mat)
self._sym_ops_cos_angle = OrderedDict()
for dataset_id in range(n_datasets):
for ref_sym_op_id in range(len(sym_ops)):
ref_idx = n_datasets * ref_sym_op_id + dataset_id
for sym_op_id in range(ref_sym_op_id + 1, len(sym_ops)):
op = sym_ops[ref_sym_op_id].inverse().multiply(sym_ops[sym_op_id])
op = op.new_denominators(1, 12)
comp_idx = n_datasets * sym_op_id + dataset_id
self._sym_ops_cos_angle.setdefault(op, flex.double())
self._sym_ops_cos_angle[op].append(cos_angle[ref_idx, comp_idx])
self._score_symmetry_elements()
self._score_laue_groups()
def _score_symmetry_elements(self):
self.sym_op_scores = OrderedDict()
for op, cos_angle in self._sym_ops_cos_angle.items():
cc_true = 1
cc = flex.mean(cos_angle)
score = ScoreSymmetryElement(cc, sigma_cc=0.1, cc_true=cc_true)
score.sym_op = op
self.sym_op_scores[op] = score
def _score_laue_groups(self):
subgroup_scores = [
ScoreSubGroup(subgrp, list(self.sym_op_scores.values()))
for subgrp in self.subgroups.result_groups
]
total_likelihood = sum(score.likelihood for score in subgroup_scores)
for score in subgroup_scores:
score.likelihood /= total_likelihood
self.subgroup_scores = sorted(
subgroup_scores, key=lambda score: score.likelihood, reverse=True
)
# The 'confidence' scores are derived from the total probability of the best
# solution p_best and that for the next best solution p_next:
# confidence = [p_best * (p_best - p_next)]^1/2.
for i, score in enumerate(self.subgroup_scores[:-1]):
next_score = self.subgroup_scores[i + 1]
if score.likelihood > 0 and next_score.likelihood > 0:
lgc = score.likelihood * (score.likelihood - next_score.likelihood)
confidence = abs(lgc) ** 0.5
if lgc < 0:
confidence = -confidence
score.confidence = confidence
self.best_solution = self.subgroup_scores[0]
[docs] @staticmethod
def sym_ops_table(d):
header = ("likelihood", "Z-CC", "CC", "", "Operator")
rows = [header]
for score in d["sym_op_scores"]:
rows.append(
(
"%.3f" % score["likelihood"],
"%.2f" % score["z_cc"],
"%.2f" % score["cc"],
score["stars"],
str(sgtbx.rt_mx(str(score["operator"])).r().info()),
)
)
return rows
[docs] @staticmethod
def subgroups_table(d):
header = (
"Patterson group",
"",
"Likelihood",
"NetZcc",
"Zcc+",
"Zcc-",
"delta",
"Reindex operator",
)
rows = [header]
for score in d["subgroup_scores"]:
rows.append(
(
str(
sgtbx.space_group(
hall_symbol=str(score["patterson_group"])
).info()
),
score["stars"],
"%.3f" % score["likelihood"],
"% .2f" % score["z_cc_net"],
"% .2f" % score["z_cc_for"],
"% .2f" % score["z_cc_against"],
"%.1f" % score["max_angular_difference"],
str(sgtbx.change_of_basis_op(str(score["cb_op"]))),
)
)
return rows
[docs] @staticmethod
def summary_table(d):
best_subgroup = d["subgroup_scores"][0]
return (
(
"Best solution",
str(
sgtbx.space_group(
hall_symbol=str(best_subgroup["patterson_group"])
).info()
),
),
(
"Unit cell",
"%.3f %.3f %.3f %.1f %.1f %.1f" % tuple(best_subgroup["unit_cell"]),
),
("Reindex operator", best_subgroup["cb_op"]),
("Laue group probability", "%.3f" % best_subgroup["likelihood"]),
("Laue group confidence", "%.3f" % best_subgroup["confidence"]),
)
def __str__(self):
"""Return a string representation of the results.
Returns:
str:
"""
output = []
output.append("Scoring individual symmetry elements")
d = self.as_dict()
output.append(dials.util.tabulate(self.sym_ops_table(d), headers="firstrow"))
output.append("Scoring all possible sub-groups")
output.append(dials.util.tabulate(self.subgroups_table(d), headers="firstrow"))
output.append(
"Best solution: %s"
% self.best_solution.subgroup["best_subsym"].space_group_info()
)
output.append(
"Unit cell: %s" % self.best_solution.subgroup["best_subsym"].unit_cell()
)
output.append(
"Reindex operator: %s"
% (self.best_solution.subgroup["cb_op_inp_best"] * self.cb_op_inp_min)
)
output.append("Laue group probability: %.3f" % self.best_solution.likelihood)
output.append("Laue group confidence: %.3f" % self.best_solution.confidence)
return "\n".join(output)
[docs] def as_dict(self):
"""Return a dictionary representation of the results.
Returns:
dict
"""
d = {"cb_op_inp_min": self.cb_op_inp_min.as_xyz()}
d["sym_op_scores"] = []
for rt_mx, score in self.sym_op_scores.items():
dd = score.as_dict()
dd["operator"] = rt_mx.as_xyz()
d["sym_op_scores"].append(dd)
d["subgroup_scores"] = []
for score in self.subgroup_scores:
dd = score.as_dict()
dd["cb_op"] = (
sgtbx.change_of_basis_op(dd["cb_op"]) * self.cb_op_inp_min
).as_xyz()
d["subgroup_scores"].append(dd)
return d
[docs]class ScoreSymmetryElement(object):
"""Analyse intensities for presence of a given symmetry operation.
1) Calculate the probability of observing this CC if the sym op is present,
p(CC; S), modelled by a Cauchy distribution centred on cc_true and width
gamma = sigma_cc.
2) Calculate the probability of observing this CC if the sym op is
NOT present, p(CC; !S).
3) Calculate the likelihood of symmetry element being present,
p(S; CC) = p(CC; S) / (p(CC; S) + p(CC; !S))
See appendix A1 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
def __init__(self, cc, sigma_cc, cc_true):
"""Initialise a ScoreSymmetryElement object.
Args:
cc (float): the correlation coefficient for this symmetry element
sigma_cc (float): the estimated error in the correlation coefficient
cc_true (float): the expected value of CC if the symmetry element is present,
E(CC; S)
"""
self.cc = cc
self.sigma_cc = sigma_cc
self.z_cc = self.cc / self.sigma_cc
score_cc = ScoreCorrelationCoefficient(self.cc, self.sigma_cc, cc_true)
self.p_cc_given_s = score_cc.p_cc_given_s
self.p_cc_given_not_s = score_cc.p_cc_given_not_s
self.likelihood = score_cc.p_s_given_cc
@property
def stars(self):
# define stars attribute - used mainly for output
if self.likelihood > 0.9:
stars = "***"
elif self.likelihood > 0.7:
stars = "**"
elif self.likelihood > 0.5:
stars = "*"
else:
stars = ""
return stars
[docs] def as_dict(self):
"""Return a dictionary representation of the symmetry element scoring.
The dictionary will contain the following keys:
- likelihood: The likelihood of the symmetry element being present
- z_cc: The Z-score for the correlation coefficent
- cc: The correlation coefficient for the symmetry element
- operator: The xyz representation of the symmetry element
Returns:
dict:
"""
return {
"likelihood": self.likelihood,
"z_cc": self.z_cc,
"cc": self.cc,
"stars": self.stars,
}
[docs]class ScoreSubGroup(object):
"""Score the probability of a given subgroup being the true subgroup.
1) Calculates overall Zcc scores for symmetry elements present/absent from
the subgroup.
2) Calculates the overall likelihood for this subgroup.
See appendix A2 of `Evans, P. R. (2011). Acta Cryst. D67, 282-292.
<https://doi.org/10.1107/S090744491003982X>`_
"""
def __init__(self, subgroup, sym_op_scores):
"""Initialise a ScoreSubGroup object.
Args:
subgroup (dict): A dictionary describing the subgroup as generated by
:class:`cctbx.sgtbx.lattice_symmetry.metric_subgroups`.
sym_op_scores (list): A list of :class:`ScoreSymmetryElement` objects for each
symmetry element possibly in the lattice symmetry.
"""
# Combined correlation coefficients for symmetry operations
# present/absent from subgroup
self.subgroup = subgroup
patterson_group = subgroup["subsym"].space_group()
# Overall Zcc scores for symmetry elements present/absent from subgroup
self.z_cc_for = 0
self.z_cc_against = 0
n_for = 0
n_against = 0
PL_for = 0
PL_against = 0
power = 2
for score in sym_op_scores:
if score.sym_op in patterson_group:
self.z_cc_for += score.z_cc ** power
n_for += 1
PL_for += math.log(score.p_cc_given_s)
else:
self.z_cc_against += score.z_cc ** power
n_against += 1
PL_against += math.log(score.p_cc_given_not_s)
# Overall likelihood for this subgroup
self.likelihood = math.exp(PL_for + PL_against)
if n_against > 0:
self.z_cc_against = (self.z_cc_against / n_against) ** (1 / power)
if n_for > 0:
self.z_cc_for = (self.z_cc_for / n_for) ** (1 / power)
self.z_cc_net = self.z_cc_for - self.z_cc_against
self.confidence = 0
def __str__(self):
"""Return a string representation of the subgroup scores.
Returns:
str:
"""
return "%s %.3f %.2f %.2f %.2f" % (
self.subgroup["best_subsym"].space_group_info(),
self.likelihood,
self.z_cc_net,
self.z_cc_for,
self.z_cc_against,
)
@property
def stars(self):
if self.likelihood > 0.8:
stars = "***"
elif self.likelihood > 0.6:
stars = "**"
elif self.likelihood > 0.4:
stars = "*"
else:
stars = ""
return stars
[docs] def as_dict(self):
"""Return a dictionary representation of the subgroup scoring.
The dictionary will contain the following keys:
- patterson_group: The current subgroup
- likelihood: The likelihood of the subgroup being correct
- confidence: The confidence of the subgroup being correct
- z_cc_for: The combined Z-scores for all symmetry elements present in the
subgroup
- z_cc_against: The combined Z-scores for all symmetry elements present in
the lattice group but not in the subgroup
- z_cc_net: The net Z-score, i.e. z_cc_for - z_cc_against
- max_angular_difference: The maximum angular difference between the
symmetrised unit cell and the P1 unit cell.
- cb_op: The change of basis operation from the input unit cell to the
'best' unit cell.
Returns:
dict:
"""
return {
"patterson_group": self.subgroup["best_subsym"]
.space_group()
.type()
.hall_symbol(),
"unit_cell": self.subgroup["best_subsym"].unit_cell().parameters(),
"likelihood": self.likelihood,
"confidence": self.confidence,
"z_cc_net": self.z_cc_net,
"z_cc_for": self.z_cc_for,
"z_cc_against": self.z_cc_against,
"max_angular_difference": self.subgroup["max_angular_difference"],
"cb_op": "%s" % (self.subgroup["cb_op_inp_best"]),
"stars": self.stars,
}