This tutorial requires a DIALS 3 installation.
Please click here to go to the tutorial for DIALS 2.2.

Processing in Detail

Introduction

DIALS processing may be performed by either running the individual tools (spot finding, indexing, refinement, integration, symmetry, scaling, exporting to MTZ) or you can run xia2 pipeline=dials, which makes informed choices for you at each stage. In this tutorial we will run through each of the steps in turn, checking the output as we go. We will also enforce the correct lattice symmetry.

Tutorial data

The following example uses a Beta-Lactamase dataset collected using beamline I04 at Diamond Light Source, and reprocessed especially for these tutorials.

Hint

If you are physically at Diamond on the CCP4 Workshop, then this data is already available in your training data area. After typing module load ccp4-workshop you’ll be moved to a working folder, with the data already located in the tutorial-data/summed subdirectory.

The data is otherwise available for download from lactamase. We’ll only be using the first run of data in this tutorial, C2sum_1.tar, extracted to a tutorial-data/summed subdirectory.

Import

The first stage of step-by-step DIALS processing is to import the data - all that happens here is that metadata are read for all the images, and a file describing their contents (imported.expt) is written:

dials.import tutorial-data/summed/C2sum_1*.cbf.gz

The output just describes what the software understands of the images it was passed, in this case one sequence of data containing 720 images:

DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

input {
  experiments = <image files>
}

--------------------------------------------------------------------------------
  format: <class 'dxtbx.format.FormatCBFMiniPilatusDLS6MSN100.FormatCBFMiniPilatusDLS6MSN100'>
  num images: 720
  sequences:
    still:    0
    sweep:    1
  num stills: 0
--------------------------------------------------------------------------------
Writing experiments to imported.expt

Now is a good point to take a first look at the data using the dials.image_viewer, both to check that the data is sensible and to anticipate any problems in processing:

dials.image_viewer imported.expt

You will be presented with the main image viewer screen:

https://dials.github.io/images/process_detail_betalactamase/image_viewer.png

Play with the brightness slider (①) a little until you can clearly see the spots on the first image (something in the range 10-20 should make the spots obvious). You can also change the colour scheme (sometimes spots can be easier to identify in ‘inverted’ mode) , toggle various information markers like beam center, and try different configurations for the spot finding (②).

Find Spots

The first “real” task in any processing using DIALS is the spot finding. Since this is looking for spots on every image in the dataset, this process can take some time, so we request multiple processors (nproc=4) to speed this up:

dials.find_spots imported.expt nproc=4

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

spotfinder {
  mp {
    nproc = 4
  }
}
input {
  experiments = imported.expt
}

Setting spotfinder.filter.min_spot_size=3
Configuring spot finder from input parameters
--------------------------------------------------------------------------------
Finding strong spots in imageset 0
--------------------------------------------------------------------------------


Finding spots in image 1 to 720...
Setting chunksize=20
Extracting strong pixels from images
 Using multiprocessing with 4 parallel job(s)

Found 1752 strong pixels on image 1
Found 1536 strong pixels on image 2
Found 1439 strong pixels on image 3
Found 1433 strong pixels on image 4
Found 1695 strong pixels on image 5
Found 1645 strong pixels on image 6
Found 1593 strong pixels on image 7
Found 1663 strong pixels on image 8
Found 1597 strong pixels on image 9
Found 1605 strong pixels on image 10
Found 1452 strong pixels on image 11
Found 1491 strong pixels on image 12
Found 1489 strong pixels on image 13
Found 1562 strong pixels on image 14
Found 1519 strong pixels on image 15
Found 1605 strong pixels on image 16
Found 1429 strong pixels on image 17
Found 1404 strong pixels on image 18
Found 1407 strong pixels on image 19
Found 1411 strong pixels on image 20
Found 1504 strong pixels on image 21
Found 1562 strong pixels on image 22
Found 1368 strong pixels on image 23
Found 1385 strong pixels on image 24
Found 1488 strong pixels on image 25
Found 1518 strong pixels on image 26
Found 1511 strong pixels on image 27
Found 1470 strong pixels on image 28
Found 1435 strong pixels on image 29
Found 1414 strong pixels on image 30
Found 1540 strong pixels on image 31
Found 1591 strong pixels on image 32
Found 1418 strong pixels on image 33
Found 1474 strong pixels on image 34
Found 1438 strong pixels on image 35
Found 1257 strong pixels on image 36
Found 1223 strong pixels on image 37
Found 1357 strong pixels on image 38
Found 1350 strong pixels on image 39
Found 1441 strong pixels on image 40
Found 1393 strong pixels on image 41
Found 1394 strong pixels on image 42
Found 1411 strong pixels on image 43
Found 1366 strong pixels on image 44
Found 1397 strong pixels on image 45
Found 1231 strong pixels on image 46
Found 1304 strong pixels on image 47
Found 1498 strong pixels on image 48
Found 1444 strong pixels on image 49
Found 1452 strong pixels on image 50
Found 1270 strong pixels on image 51
Found 1465 strong pixels on image 52
Found 1431 strong pixels on image 53
Found 1523 strong pixels on image 54
Found 1382 strong pixels on image 55
Found 1285 strong pixels on image 56
Found 1168 strong pixels on image 57
Found 1383 strong pixels on image 58
Found 1298 strong pixels on image 59
Found 1311 strong pixels on image 60
Found 1273 strong pixels on image 61
Found 1333 strong pixels on image 62
Found 1325 strong pixels on image 63
Found 1253 strong pixels on image 64
Found 1353 strong pixels on image 65
Found 1502 strong pixels on image 66
Found 1317 strong pixels on image 67
Found 1399 strong pixels on image 68
Found 1295 strong pixels on image 69
Found 1255 strong pixels on image 70
Found 1488 strong pixels on image 71
Found 1242 strong pixels on image 72
Found 1289 strong pixels on image 73
Found 1320 strong pixels on image 74
Found 1252 strong pixels on image 75
Found 1435 strong pixels on image 76
Found 1411 strong pixels on image 77
Found 1306 strong pixels on image 78
Found 1307 strong pixels on image 79
Found 1380 strong pixels on image 80
Found 1331 strong pixels on image 81
Found 1235 strong pixels on image 82
Found 1385 strong pixels on image 83
Found 1331 strong pixels on image 84
Found 1337 strong pixels on image 85
Found 1456 strong pixels on image 86
Found 1221 strong pixels on image 87
Found 1570 strong pixels on image 88
Found 1388 strong pixels on image 89
Found 1261 strong pixels on image 90
Found 1333 strong pixels on image 91
Found 1458 strong pixels on image 92
Found 1385 strong pixels on image 93
Found 1383 strong pixels on image 94
Found 1282 strong pixels on image 95
Found 1343 strong pixels on image 96
Found 1394 strong pixels on image 97
Found 1500 strong pixels on image 98
Found 1245 strong pixels on image 99
Found 1284 strong pixels on image 100
Found 1355 strong pixels on image 101
Found 1581 strong pixels on image 102
Found 1540 strong pixels on image 103
Found 1410 strong pixels on image 104
Found 1455 strong pixels on image 105
Found 1490 strong pixels on image 106
Found 1393 strong pixels on image 107
Found 1405 strong pixels on image 108
Found 1553 strong pixels on image 109
Found 1391 strong pixels on image 110
Found 1278 strong pixels on image 111
Found 1318 strong pixels on image 112
Found 1702 strong pixels on image 113
Found 1526 strong pixels on image 114
Found 1424 strong pixels on image 115
Found 1278 strong pixels on image 116
Found 1453 strong pixels on image 117
Found 1551 strong pixels on image 118
Found 1440 strong pixels on image 119
Found 1364 strong pixels on image 120
Found 1424 strong pixels on image 121
Found 1467 strong pixels on image 122
Found 1407 strong pixels on image 123
Found 1433 strong pixels on image 124
Found 1417 strong pixels on image 125
Found 1577 strong pixels on image 126
Found 1484 strong pixels on image 127
Found 1325 strong pixels on image 128
Found 1326 strong pixels on image 129
Found 1470 strong pixels on image 130
Found 1467 strong pixels on image 131
Found 1397 strong pixels on image 132
Found 1497 strong pixels on image 133
Found 1394 strong pixels on image 134
Found 1537 strong pixels on image 135
Found 1413 strong pixels on image 136
Found 1596 strong pixels on image 137
Found 1640 strong pixels on image 138
Found 1380 strong pixels on image 139
Found 1332 strong pixels on image 140
Found 1461 strong pixels on image 141
Found 1489 strong pixels on image 142
Found 1448 strong pixels on image 143
Found 1552 strong pixels on image 144
Found 1610 strong pixels on image 145
Found 1420 strong pixels on image 146
Found 1615 strong pixels on image 147
Found 1625 strong pixels on image 148
Found 1617 strong pixels on image 149
Found 1623 strong pixels on image 150
Found 1540 strong pixels on image 151
Found 1506 strong pixels on image 152
Found 1575 strong pixels on image 153
Found 1572 strong pixels on image 154
Found 1643 strong pixels on image 155
Found 1601 strong pixels on image 156
Found 1633 strong pixels on image 157
Found 1715 strong pixels on image 158
Found 1473 strong pixels on image 159
Found 1477 strong pixels on image 160
Found 1436 strong pixels on image 161
Found 1560 strong pixels on image 162
Found 1585 strong pixels on image 163
Found 1617 strong pixels on image 164
Found 1587 strong pixels on image 165
Found 1622 strong pixels on image 166
Found 1475 strong pixels on image 167
Found 1583 strong pixels on image 168
Found 1582 strong pixels on image 169
Found 1455 strong pixels on image 170
Found 1701 strong pixels on image 171
Found 1747 strong pixels on image 172
Found 1529 strong pixels on image 173
Found 1511 strong pixels on image 174
Found 1598 strong pixels on image 175
Found 1603 strong pixels on image 176
Found 1532 strong pixels on image 177
Found 1760 strong pixels on image 178
Found 1542 strong pixels on image 179
Found 1555 strong pixels on image 180
Found 1530 strong pixels on image 181
Found 1589 strong pixels on image 182
Found 1509 strong pixels on image 183
Found 1622 strong pixels on image 184
Found 1632 strong pixels on image 185
Found 1415 strong pixels on image 186
Found 1588 strong pixels on image 187
Found 1437 strong pixels on image 188
Found 1732 strong pixels on image 189
Found 1777 strong pixels on image 190
Found 1673 strong pixels on image 191
Found 1559 strong pixels on image 192
Found 1542 strong pixels on image 193
Found 1474 strong pixels on image 194
Found 1868 strong pixels on image 195
Found 1787 strong pixels on image 196
Found 1705 strong pixels on image 197
Found 1376 strong pixels on image 198
Found 1533 strong pixels on image 199
Found 1680 strong pixels on image 200
Found 1658 strong pixels on image 201
Found 1638 strong pixels on image 202
Found 1633 strong pixels on image 203
Found 1416 strong pixels on image 204
Found 1417 strong pixels on image 205
Found 1638 strong pixels on image 206
Found 1502 strong pixels on image 207
Found 1580 strong pixels on image 208
Found 1807 strong pixels on image 209
Found 1734 strong pixels on image 210
Found 1472 strong pixels on image 211
Found 1501 strong pixels on image 212
Found 1576 strong pixels on image 213
Found 1394 strong pixels on image 214
Found 1633 strong pixels on image 215
Found 1710 strong pixels on image 216
Found 1649 strong pixels on image 217
Found 1551 strong pixels on image 218
Found 1736 strong pixels on image 219
Found 1560 strong pixels on image 220
Found 1770 strong pixels on image 221
Found 1692 strong pixels on image 222
Found 1776 strong pixels on image 223
Found 1626 strong pixels on image 224
Found 1660 strong pixels on image 225
Found 1462 strong pixels on image 226
Found 1628 strong pixels on image 227
Found 1913 strong pixels on image 228
Found 1697 strong pixels on image 229
Found 1708 strong pixels on image 230
Found 1533 strong pixels on image 231
Found 1584 strong pixels on image 232
Found 1668 strong pixels on image 233
Found 1550 strong pixels on image 234
Found 1564 strong pixels on image 235
Found 1564 strong pixels on image 236
Found 1744 strong pixels on image 237
Found 1610 strong pixels on image 238
Found 1649 strong pixels on image 239
Found 1687 strong pixels on image 240
Found 1783 strong pixels on image 241
Found 1696 strong pixels on image 242
Found 1764 strong pixels on image 243
Found 1765 strong pixels on image 244
Found 1538 strong pixels on image 245
Found 1612 strong pixels on image 246
Found 1619 strong pixels on image 247
Found 1763 strong pixels on image 248
Found 1798 strong pixels on image 249
Found 1671 strong pixels on image 250
Found 1613 strong pixels on image 251
Found 1562 strong pixels on image 252
Found 1560 strong pixels on image 253
Found 1712 strong pixels on image 254
Found 1490 strong pixels on image 255
Found 1599 strong pixels on image 256
Found 1805 strong pixels on image 257
Found 1550 strong pixels on image 258
Found 1790 strong pixels on image 259
Found 1740 strong pixels on image 260
Found 1683 strong pixels on image 261
Found 1458 strong pixels on image 262
Found 1535 strong pixels on image 263
Found 1626 strong pixels on image 264
Found 1456 strong pixels on image 265
Found 1697 strong pixels on image 266
Found 1928 strong pixels on image 267
Found 1950 strong pixels on image 268
Found 1674 strong pixels on image 269
Found 1871 strong pixels on image 270
Found 1634 strong pixels on image 271
Found 1641 strong pixels on image 272
Found 1723 strong pixels on image 273
Found 1912 strong pixels on image 274
Found 1903 strong pixels on image 275
Found 1627 strong pixels on image 276
Found 1664 strong pixels on image 277
Found 1614 strong pixels on image 278
Found 1810 strong pixels on image 279
Found 1865 strong pixels on image 280
Found 1717 strong pixels on image 281
Found 1598 strong pixels on image 282
Found 1531 strong pixels on image 283
Found 1644 strong pixels on image 284
Found 1661 strong pixels on image 285
Found 1655 strong pixels on image 286
Found 1664 strong pixels on image 287
Found 1510 strong pixels on image 288
Found 1786 strong pixels on image 289
Found 1731 strong pixels on image 290
Found 1747 strong pixels on image 291
Found 1635 strong pixels on image 292
Found 1694 strong pixels on image 293
Found 1732 strong pixels on image 294
Found 1505 strong pixels on image 295
Found 1574 strong pixels on image 296
Found 1562 strong pixels on image 297
Found 1610 strong pixels on image 298
Found 1799 strong pixels on image 299
Found 1764 strong pixels on image 300
Found 1879 strong pixels on image 301
Found 1574 strong pixels on image 302
Found 1682 strong pixels on image 303
Found 1510 strong pixels on image 304
Found 1493 strong pixels on image 305
Found 1458 strong pixels on image 306
Found 1584 strong pixels on image 307
Found 1659 strong pixels on image 308
Found 1581 strong pixels on image 309
Found 1552 strong pixels on image 310
Found 1575 strong pixels on image 311
Found 1649 strong pixels on image 312
Found 1710 strong pixels on image 313
Found 1644 strong pixels on image 314
Found 1508 strong pixels on image 315
Found 1499 strong pixels on image 316
Found 1568 strong pixels on image 317
Found 1679 strong pixels on image 318
Found 1754 strong pixels on image 319
Found 1475 strong pixels on image 320
Found 1430 strong pixels on image 321
Found 1466 strong pixels on image 322
Found 1459 strong pixels on image 323
Found 1662 strong pixels on image 324
Found 1820 strong pixels on image 325
Found 1646 strong pixels on image 326
Found 1538 strong pixels on image 327
Found 1563 strong pixels on image 328
Found 1464 strong pixels on image 329
Found 1665 strong pixels on image 330
Found 1480 strong pixels on image 331
Found 1348 strong pixels on image 332
Found 1426 strong pixels on image 333
Found 1721 strong pixels on image 334
Found 1210 strong pixels on image 335
Found 1403 strong pixels on image 336
Found 1520 strong pixels on image 337
Found 1381 strong pixels on image 338
Found 1488 strong pixels on image 339
Found 1433 strong pixels on image 340
Found 1488 strong pixels on image 341
Found 1307 strong pixels on image 342
Found 1535 strong pixels on image 343
Found 1379 strong pixels on image 344
Found 1442 strong pixels on image 345
Found 1201 strong pixels on image 346
Found 1409 strong pixels on image 347
Found 1470 strong pixels on image 348
Found 1490 strong pixels on image 349
Found 1298 strong pixels on image 350
Found 1510 strong pixels on image 351
Found 1418 strong pixels on image 352
Found 1354 strong pixels on image 353
Found 1551 strong pixels on image 354
Found 1390 strong pixels on image 355
Found 1388 strong pixels on image 356
Found 1507 strong pixels on image 357
Found 1362 strong pixels on image 358
Found 1205 strong pixels on image 359
Found 1453 strong pixels on image 360
Found 1518 strong pixels on image 361
Found 1546 strong pixels on image 362
Found 1327 strong pixels on image 363
Found 1324 strong pixels on image 364
Found 1545 strong pixels on image 365
Found 1367 strong pixels on image 366
Found 1452 strong pixels on image 367
Found 1688 strong pixels on image 368
Found 1477 strong pixels on image 369
Found 1371 strong pixels on image 370
Found 1226 strong pixels on image 371
Found 1432 strong pixels on image 372
Found 1460 strong pixels on image 373
Found 1371 strong pixels on image 374
Found 1419 strong pixels on image 375
Found 1296 strong pixels on image 376
Found 1349 strong pixels on image 377
Found 1315 strong pixels on image 378
Found 1238 strong pixels on image 379
Found 1297 strong pixels on image 380
Found 1340 strong pixels on image 381
Found 1375 strong pixels on image 382
Found 1252 strong pixels on image 383
Found 1335 strong pixels on image 384
Found 1267 strong pixels on image 385
Found 1427 strong pixels on image 386
Found 1457 strong pixels on image 387
Found 1345 strong pixels on image 388
Found 1423 strong pixels on image 389
Found 1414 strong pixels on image 390
Found 1426 strong pixels on image 391
Found 1354 strong pixels on image 392
Found 1319 strong pixels on image 393
Found 1363 strong pixels on image 394
Found 1287 strong pixels on image 395
Found 1240 strong pixels on image 396
Found 1264 strong pixels on image 397
Found 1253 strong pixels on image 398
Found 1328 strong pixels on image 399
Found 1406 strong pixels on image 400
Found 1258 strong pixels on image 401
Found 1242 strong pixels on image 402
Found 1291 strong pixels on image 403
Found 1466 strong pixels on image 404
Found 1341 strong pixels on image 405
Found 1208 strong pixels on image 406
Found 1290 strong pixels on image 407
Found 1382 strong pixels on image 408
Found 1309 strong pixels on image 409
Found 1344 strong pixels on image 410
Found 1197 strong pixels on image 411
Found 1397 strong pixels on image 412
Found 1384 strong pixels on image 413
Found 1389 strong pixels on image 414
Found 1338 strong pixels on image 415
Found 1219 strong pixels on image 416
Found 1191 strong pixels on image 417
Found 1408 strong pixels on image 418
Found 1234 strong pixels on image 419
Found 1281 strong pixels on image 420
Found 1121 strong pixels on image 421
Found 1319 strong pixels on image 422
Found 1186 strong pixels on image 423
Found 1286 strong pixels on image 424
Found 1259 strong pixels on image 425
Found 1478 strong pixels on image 426
Found 1198 strong pixels on image 427
Found 1248 strong pixels on image 428
Found 1204 strong pixels on image 429
Found 1310 strong pixels on image 430
Found 1458 strong pixels on image 431
Found 1094 strong pixels on image 432
Found 1273 strong pixels on image 433
Found 1319 strong pixels on image 434
Found 1171 strong pixels on image 435
Found 1391 strong pixels on image 436
Found 1262 strong pixels on image 437
Found 1217 strong pixels on image 438
Found 1300 strong pixels on image 439
Found 1340 strong pixels on image 440
Found 1275 strong pixels on image 441
Found 1130 strong pixels on image 442
Found 1337 strong pixels on image 443
Found 1265 strong pixels on image 444
Found 1310 strong pixels on image 445
Found 1293 strong pixels on image 446
Found 1220 strong pixels on image 447
Found 1463 strong pixels on image 448
Found 1299 strong pixels on image 449
Found 1256 strong pixels on image 450
Found 1322 strong pixels on image 451
Found 1375 strong pixels on image 452
Found 1189 strong pixels on image 453
Found 1217 strong pixels on image 454
Found 1321 strong pixels on image 455
Found 1219 strong pixels on image 456
Found 1265 strong pixels on image 457
Found 1311 strong pixels on image 458
Found 1222 strong pixels on image 459
Found 1167 strong pixels on image 460
Found 1268 strong pixels on image 461
Found 1352 strong pixels on image 462
Found 1484 strong pixels on image 463
Found 1277 strong pixels on image 464
Found 1390 strong pixels on image 465
Found 1346 strong pixels on image 466
Found 1264 strong pixels on image 467
Found 1189 strong pixels on image 468
Found 1492 strong pixels on image 469
Found 1276 strong pixels on image 470
Found 1214 strong pixels on image 471
Found 1297 strong pixels on image 472
Found 1489 strong pixels on image 473
Found 1379 strong pixels on image 474
Found 1271 strong pixels on image 475
Found 1240 strong pixels on image 476
Found 1339 strong pixels on image 477
Found 1503 strong pixels on image 478
Found 1299 strong pixels on image 479
Found 1273 strong pixels on image 480
Found 1262 strong pixels on image 481
Found 1307 strong pixels on image 482
Found 1181 strong pixels on image 483
Found 1259 strong pixels on image 484
Found 1271 strong pixels on image 485
Found 1452 strong pixels on image 486
Found 1288 strong pixels on image 487
Found 1135 strong pixels on image 488
Found 1183 strong pixels on image 489
Found 1369 strong pixels on image 490
Found 1335 strong pixels on image 491
Found 1275 strong pixels on image 492
Found 1344 strong pixels on image 493
Found 1315 strong pixels on image 494
Found 1480 strong pixels on image 495
Found 1264 strong pixels on image 496
Found 1371 strong pixels on image 497
Found 1406 strong pixels on image 498
Found 1187 strong pixels on image 499
Found 1155 strong pixels on image 500
Found 1328 strong pixels on image 501
Found 1341 strong pixels on image 502
Found 1369 strong pixels on image 503
Found 1317 strong pixels on image 504
Found 1555 strong pixels on image 505
Found 1259 strong pixels on image 506
Found 1436 strong pixels on image 507
Found 1404 strong pixels on image 508
Found 1358 strong pixels on image 509
Found 1485 strong pixels on image 510
Found 1393 strong pixels on image 511
Found 1323 strong pixels on image 512
Found 1394 strong pixels on image 513
Found 1338 strong pixels on image 514
Found 1454 strong pixels on image 515
Found 1434 strong pixels on image 516
Found 1436 strong pixels on image 517
Found 1493 strong pixels on image 518
Found 1339 strong pixels on image 519
Found 1452 strong pixels on image 520
Found 1332 strong pixels on image 521
Found 1312 strong pixels on image 522
Found 1440 strong pixels on image 523
Found 1317 strong pixels on image 524
Found 1356 strong pixels on image 525
Found 1425 strong pixels on image 526
Found 1277 strong pixels on image 527
Found 1471 strong pixels on image 528
Found 1437 strong pixels on image 529
Found 1229 strong pixels on image 530
Found 1469 strong pixels on image 531
Found 1558 strong pixels on image 532
Found 1292 strong pixels on image 533
Found 1421 strong pixels on image 534
Found 1460 strong pixels on image 535
Found 1440 strong pixels on image 536
Found 1348 strong pixels on image 537
Found 1515 strong pixels on image 538
Found 1464 strong pixels on image 539
Found 1404 strong pixels on image 540
Found 1492 strong pixels on image 541
Found 1420 strong pixels on image 542
Found 1351 strong pixels on image 543
Found 1469 strong pixels on image 544
Found 1415 strong pixels on image 545
Found 1348 strong pixels on image 546
Found 1373 strong pixels on image 547
Found 1294 strong pixels on image 548
Found 1613 strong pixels on image 549
Found 1631 strong pixels on image 550
Found 1579 strong pixels on image 551
Found 1429 strong pixels on image 552
Found 1406 strong pixels on image 553
Found 1348 strong pixels on image 554
Found 1710 strong pixels on image 555
Found 1656 strong pixels on image 556
Found 1562 strong pixels on image 557
Found 1343 strong pixels on image 558
Found 1406 strong pixels on image 559
Found 1570 strong pixels on image 560
Found 1538 strong pixels on image 561
Found 1593 strong pixels on image 562
Found 1456 strong pixels on image 563
Found 1354 strong pixels on image 564
Found 1374 strong pixels on image 565
Found 1558 strong pixels on image 566
Found 1347 strong pixels on image 567
Found 1418 strong pixels on image 568
Found 1722 strong pixels on image 569
Found 1629 strong pixels on image 570
Found 1445 strong pixels on image 571
Found 1419 strong pixels on image 572
Found 1526 strong pixels on image 573
Found 1458 strong pixels on image 574
Found 1736 strong pixels on image 575
Found 1549 strong pixels on image 576
Found 1531 strong pixels on image 577
Found 1376 strong pixels on image 578
Found 1591 strong pixels on image 579
Found 1398 strong pixels on image 580
Found 1842 strong pixels on image 581
Found 1662 strong pixels on image 582
Found 1689 strong pixels on image 583
Found 1657 strong pixels on image 584
Found 1614 strong pixels on image 585
Found 1477 strong pixels on image 586
Found 1617 strong pixels on image 587
Found 1794 strong pixels on image 588
Found 1582 strong pixels on image 589
Found 1678 strong pixels on image 590
Found 1612 strong pixels on image 591
Found 1513 strong pixels on image 592
Found 1750 strong pixels on image 593
Found 1467 strong pixels on image 594
Found 1584 strong pixels on image 595
Found 1534 strong pixels on image 596
Found 1781 strong pixels on image 597
Found 1568 strong pixels on image 598
Found 1618 strong pixels on image 599
Found 1689 strong pixels on image 600
Found 1949 strong pixels on image 601
Found 1701 strong pixels on image 602
Found 1871 strong pixels on image 603
Found 1674 strong pixels on image 604
Found 1530 strong pixels on image 605
Found 1594 strong pixels on image 606
Found 1719 strong pixels on image 607
Found 1719 strong pixels on image 608
Found 1711 strong pixels on image 609
Found 1649 strong pixels on image 610
Found 1580 strong pixels on image 611
Found 1489 strong pixels on image 612
Found 1625 strong pixels on image 613
Found 1740 strong pixels on image 614
Found 1664 strong pixels on image 615
Found 1703 strong pixels on image 616
Found 1838 strong pixels on image 617
Found 1521 strong pixels on image 618
Found 1782 strong pixels on image 619
Found 1678 strong pixels on image 620
Found 1689 strong pixels on image 621
Found 1619 strong pixels on image 622
Found 1640 strong pixels on image 623
Found 1682 strong pixels on image 624
Found 1471 strong pixels on image 625
Found 1713 strong pixels on image 626
Found 1896 strong pixels on image 627
Found 1912 strong pixels on image 628
Found 1795 strong pixels on image 629
Found 1904 strong pixels on image 630
Found 1681 strong pixels on image 631
Found 1732 strong pixels on image 632
Found 1734 strong pixels on image 633
Found 1928 strong pixels on image 634
Found 1937 strong pixels on image 635
Found 1784 strong pixels on image 636
Found 1741 strong pixels on image 637
Found 1730 strong pixels on image 638
Found 1894 strong pixels on image 639
Found 1947 strong pixels on image 640
Found 1916 strong pixels on image 641
Found 1692 strong pixels on image 642
Found 1622 strong pixels on image 643
Found 1676 strong pixels on image 644
Found 1708 strong pixels on image 645
Found 1787 strong pixels on image 646
Found 1727 strong pixels on image 647
Found 1606 strong pixels on image 648
Found 1774 strong pixels on image 649
Found 1699 strong pixels on image 650
Found 1851 strong pixels on image 651
Found 1710 strong pixels on image 652
Found 1742 strong pixels on image 653
Found 1852 strong pixels on image 654
Found 1528 strong pixels on image 655
Found 1671 strong pixels on image 656
Found 1693 strong pixels on image 657
Found 1716 strong pixels on image 658
Found 1760 strong pixels on image 659
Found 1728 strong pixels on image 660
Found 1997 strong pixels on image 661
Found 1597 strong pixels on image 662
Found 1615 strong pixels on image 663
Found 1588 strong pixels on image 664
Found 1609 strong pixels on image 665
Found 1630 strong pixels on image 666
Found 1729 strong pixels on image 667
Found 1730 strong pixels on image 668
Found 1577 strong pixels on image 669
Found 1584 strong pixels on image 670
Found 1621 strong pixels on image 671
Found 1683 strong pixels on image 672
Found 1735 strong pixels on image 673
Found 1605 strong pixels on image 674
Found 1650 strong pixels on image 675
Found 1534 strong pixels on image 676
Found 1572 strong pixels on image 677
Found 1677 strong pixels on image 678
Found 1769 strong pixels on image 679
Found 1594 strong pixels on image 680
Found 1608 strong pixels on image 681
Found 1405 strong pixels on image 682
Found 1559 strong pixels on image 683
Found 1707 strong pixels on image 684
Found 1709 strong pixels on image 685
Found 1645 strong pixels on image 686
Found 1530 strong pixels on image 687
Found 1636 strong pixels on image 688
Found 1550 strong pixels on image 689
Found 1738 strong pixels on image 690
Found 1546 strong pixels on image 691
Found 1504 strong pixels on image 692
Found 1586 strong pixels on image 693
Found 1740 strong pixels on image 694
Found 1423 strong pixels on image 695
Found 1573 strong pixels on image 696
Found 1506 strong pixels on image 697
Found 1434 strong pixels on image 698
Found 1568 strong pixels on image 699
Found 1498 strong pixels on image 700
Found 1629 strong pixels on image 701
Found 1569 strong pixels on image 702
Found 1563 strong pixels on image 703
Found 1447 strong pixels on image 704
Found 1445 strong pixels on image 705
Found 1311 strong pixels on image 706
Found 1513 strong pixels on image 707
Found 1653 strong pixels on image 708
Found 1509 strong pixels on image 709
Found 1476 strong pixels on image 710
Found 1579 strong pixels on image 711
Found 1523 strong pixels on image 712
Found 1563 strong pixels on image 713
Found 1562 strong pixels on image 714
Found 1560 strong pixels on image 715
Found 1512 strong pixels on image 716
Found 1677 strong pixels on image 717
Found 1482 strong pixels on image 718
Found 1204 strong pixels on image 719
Found 1523 strong pixels on image 720

Extracted 124946 spots
Removed 16738 spots with size < 3 pixels
Removed 1 spots with size > 1000 pixels
Calculated 108207 spot centroids
Calculated 108207 spot intensities
Filtered 107999 of 108207 spots by peak-centroid distance

Histogram of per-image spot count for imageset 0:
107999 spots found on 720 images (max 2137 / bin)
*                                                           
***********                 ************                 ***
*********************************************** ************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
************************************************************
1                         image                          720

--------------------------------------------------------------------------------
Saved 107999 reflections to strong.refl

Once this has completed, a new reflection filestrong.refl’ is written, containing a record of every spot found.

The dials.image_viewer tool is not as fast as viewers such as ADXV, however it does integrate well with DIALS data files. Having found strong spots open the image viewer again, but giving it the newly found reflection list:

dials.image_viewer imported.expt strong.refl

Adjust the brightness so that you can see the spots, then zoom in so that you can see the clustered individual pixels of a single spot. Pixels determined to be part of a spot’s peak are marked with green dots. The blue outline shows the three-dimensional shoebox - the extents over detector x, y and image number z of a all peak pixels in a single spot. The single highest value pixel for any spot is marked with a pink circle, and the centre of mass is marked with a red cross.

The spot centre-of-mass is usually close to the peak pixel, but slightly offset as the algorithm allows calculation of the spot centre at a better precision than the pixel size and image angular ‘width’.

https://dials.github.io/images/process_detail_betalactamase/image_viewer_spot.png

The default parameters for spot finding usually do a good job for Pilatus images, such as these. However they may not be optimal for data from other detector types, such as CCDs or image plates. Issues with incorrectly set gain might, for example, lead to background noise being extracted as spots. You can use the image mode buttons (③) to preview how the parameters affect the spot finding algorithm. The final image, ‘threshold’ is the one on which spots were found, so ensuring this produces peaks at real diffraction spot positions will give the best chance of success.

Another very powerful tool for investigating problems with strong spot positions is dials.reciprocal_lattice_viewer. This displays the strong spots in 3D, after mapping them from their detector positions to reciprocal space. In a favourable case you should be able to see the crystal’s reciprocal lattice by eye in the strong spot positions. Some practice may be needed in rotating the lattice to an orientation that shows off the periodicity in reciprocal lattice positions:

dials.reciprocal_lattice_viewer imported.expt strong.refl
../../_images/reciprocal_lattice_strong.png

Although the reciprocal spacing is visible, in this data, there are clearly some systematic distortions. These will be solved in the indexing.

Indexing

The next step will be indexing of the strong spots by dials.index, which by default uses a 3D FFT algorithm (although the 1D FFT algorithm can be selected, using the parameter indexing.method=fft1d). We pass in all the strong spots found in the dataset:

dials.index imported.expt strong.refl

If known, the space group and unit cell can be provided at this stage using the space_group and unit_cell parameters, and will be used to constrain the lattice during refinement, but otherwise indexing and refinement will be carried out in the primitive lattice using space group P1.

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

input {
  experiments = imported.expt
  reflections = strong.refl
}

Found max_cell: 94.4 Angstrom
Setting d_min: 1.84
FFT gridding: (256,256,256)
Number of centroids used: 91203
Candidate solutions:
+----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------+
| unit_cell                        |   volume |   volume score |   #indexed |   % indexed |   % indexed score |   rmsd_xy |   rmsd_xy score |   overall score |
|----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------|
| 40.72 40.73 69.66 92.0 91.9 98.3 |   114154 |           0.01 |      94166 |          99 |              0    |      0.07 |            0    |            0.01 |
| 40.72 40.72 69.70 91.9 91.9 98.2 |   114243 |           0.01 |      94215 |          99 |              0    |      0.07 |            0    |            0.01 |
| 40.60 40.73 69.67 91.9 91.9 98.4 |   113803 |           0    |      93959 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.73 40.76 69.62 92.0 91.9 98.3 |   114214 |           0.01 |      93867 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.72 40.72 69.67 92.0 92.0 98.3 |   114144 |           0.01 |      94275 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.72 40.72 69.63 91.9 92.0 98.2 |   114123 |           0.01 |      93742 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.60 40.71 69.66 91.9 91.9 98.3 |   113784 |           0    |      93870 |          98 |              0.01 |      0.07 |            0.01 |            0.02 |
| 40.70 40.72 69.66 91.9 92.0 98.2 |   114124 |           0.01 |      94101 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.71 40.73 69.66 91.9 91.9 98.3 |   114140 |           0.01 |      94077 |          99 |              0    |      0.07 |            0.01 |            0.02 |
| 40.72 40.82 69.69 91.8 91.9 98.2 |   114518 |           0.01 |      94017 |          99 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.72 40.77 69.63 92.0 91.9 98.1 |   114292 |           0.01 |      93749 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.69 40.72 69.60 92.0 92.1 98.3 |   113958 |           0    |      93595 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.72 40.72 69.66 91.9 91.9 98.0 |   114230 |           0.01 |      94017 |          99 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.72 40.82 69.64 91.9 91.9 98.2 |   114431 |           0.01 |      93838 |          98 |              0.01 |      0.07 |            0.01 |            0.03 |
| 40.69 40.72 69.66 91.9 92.1 98.3 |   114065 |           0.01 |      94173 |          99 |              0    |      0.07 |            0.02 |            0.03 |
| 40.72 40.83 69.66 91.9 91.9 98.2 |   114507 |           0.01 |      93960 |          98 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.71 40.72 69.66 91.9 91.9 98.3 |   114109 |           0.01 |      94103 |          99 |              0    |      0.07 |            0.02 |            0.03 |
| 40.72 40.78 69.63 91.9 91.9 98.3 |   114277 |           0.01 |      93862 |          98 |              0.01 |      0.07 |            0.02 |            0.03 |
| 40.72 40.73 69.64 92.0 92.0 98.3 |   114113 |           0.01 |      94089 |          99 |              0    |      0.07 |            0.02 |            0.04 |
| 40.72 40.73 69.63 92.0 91.9 98.3 |   114110 |           0.01 |      93890 |          98 |              0.01 |      0.07 |            0.02 |            0.04 |
| 40.70 40.72 69.59 92.0 91.8 98.2 |   114017 |           0.01 |      93302 |          98 |              0.02 |      0.07 |            0.01 |            0.04 |
| 40.60 40.72 69.67 91.9 91.8 98.2 |   113865 |           0    |      93126 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.72 69.66 91.9 91.9 98.2 |   114178 |           0.01 |      94031 |          99 |              0.01 |      0.07 |            0.03 |            0.04 |
| 40.72 40.74 69.66 91.9 91.9 98.1 |   114275 |           0.01 |      94063 |          99 |              0    |      0.07 |            0.03 |            0.04 |
| 40.72 40.73 69.66 92.0 91.9 98.3 |   114151 |           0.01 |      94188 |          99 |              0    |      0.07 |            0.03 |            0.04 |
| 40.60 40.70 69.58 92.1 91.9 98.4 |   113599 |           0    |      93047 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.72 69.67 91.9 91.8 98.2 |   114191 |           0.01 |      93419 |          98 |              0.01 |      0.07 |            0.02 |            0.04 |
| 40.62 40.71 69.66 91.9 91.6 98.3 |   113880 |           0    |      93138 |          98 |              0.02 |      0.07 |            0.02 |            0.04 |
| 40.72 40.83 69.66 91.6 91.9 98.1 |   114543 |           0.01 |      92656 |          97 |              0.03 |      0.07 |            0.01 |            0.04 |
| 40.70 40.72 69.66 91.9 91.9 98.2 |   114150 |           0.01 |      93970 |          98 |              0.01 |      0.07 |            0.03 |            0.04 |
| 40.73 40.74 69.66 91.9 92.1 98.1 |   114266 |           0.01 |      94194 |          99 |              0    |      0.07 |            0.03 |            0.05 |
| 40.72 40.73 69.69 92.0 91.9 98.3 |   114199 |           0.01 |      94373 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.72 40.72 69.65 92.0 91.9 98.3 |   114110 |           0.01 |      94065 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.72 40.82 69.66 91.8 91.9 98.2 |   114470 |           0.01 |      93872 |          98 |              0.01 |      0.07 |            0.03 |            0.05 |
| 40.53 40.72 69.66 91.9 92.0 98.2 |   113637 |           0    |      93709 |          98 |              0.01 |      0.07 |            0.04 |            0.05 |
| 40.67 40.71 69.66 91.9 91.9 98.2 |   114013 |           0.01 |      94057 |          99 |              0    |      0.07 |            0.04 |            0.05 |
| 40.53 40.72 69.66 91.8 92.1 98.2 |   113621 |           0    |      92029 |          96 |              0.04 |      0.07 |            0.02 |            0.06 |
| 40.72 40.83 69.67 91.5 91.9 98.1 |   114555 |           0.01 |      91895 |          96 |              0.04 |      0.07 |            0.01 |            0.06 |
| 40.72 40.93 69.67 91.8 91.9 98.1 |   114816 |           0.02 |      92639 |          97 |              0.03 |      0.07 |            0.02 |            0.06 |
| 40.72 40.72 69.67 91.8 91.9 98.0 |   114242 |           0.01 |      93340 |          98 |              0.02 |      0.07 |            0.03 |            0.06 |
| 40.60 40.77 69.60 92.0 91.7 98.1 |   113913 |           0    |      92296 |          97 |              0.03 |      0.07 |            0.02 |            0.06 |
| 40.64 40.72 69.67 91.9 91.9 98.1 |   113990 |           0    |      93360 |          98 |              0.02 |      0.07 |            0.04 |            0.06 |
| 40.71 40.74 69.66 91.9 91.9 98.2 |   114207 |           0.01 |      94097 |          99 |              0    |      0.08 |            0.05 |            0.06 |
| 40.72 40.82 69.67 91.7 91.9 98.2 |   114482 |           0.01 |      93092 |          98 |              0.02 |      0.07 |            0.03 |            0.07 |
| 40.69 40.72 69.63 91.9 92.0 98.3 |   114024 |           0.01 |      93886 |          98 |              0.01 |      0.08 |            0.05 |            0.07 |
| 40.72 40.82 69.58 91.9 91.9 98.2 |   114325 |           0.01 |      93248 |          98 |              0.02 |      0.07 |            0.04 |            0.07 |
| 40.72 40.73 69.61 92.0 91.9 98.3 |   114060 |           0.01 |      93703 |          98 |              0.01 |      0.08 |            0.06 |            0.08 |
| 40.69 40.72 69.57 91.9 92.1 98.3 |   113906 |           0    |      92940 |          97 |              0.02 |      0.08 |            0.06 |            0.09 |
| 40.72 40.83 69.50 91.7 92.0 98.1 |   114265 |           0.01 |      91089 |          95 |              0.05 |      0.07 |            0.04 |            0.1  |
| 40.72 40.72 69.63 91.9 91.9 98.2 |   114137 |           0.01 |      93712 |          98 |              0.01 |      0.08 |            0.14 |            0.16 |
+----------------------------------+----------+----------------+------------+-------------+-------------------+-----------+-----------------+-----------------+
Using d_min_step 0.1

Indexed crystal models:
model 1 (94166 reflections):
Crystal:
    Unit cell: 40.717, 40.730, 69.663, 91.978, 91.906, 98.339
    Space group: P 1
    U matrix:  {{ 0.8417,  0.5364,  0.0626},
                {-0.1836,  0.1751,  0.9673},
                { 0.5079, -0.8256,  0.2459}}
    B matrix:  {{ 0.0246,  0.0000,  0.0000},
                { 0.0036,  0.0248,  0.0000},
                { 0.0010,  0.0010,  0.0144}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0029,  0.0053,  0.0139},
                { 0.0097, -0.0202,  0.0035}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |       94166 |          1262 | 98.7%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 1)
################################################################################


Summary statistics for 93816 observations matched to predictions:
+-------------------+--------+----------+---------+----------+-------+
|                   |    Min |       Q1 |     Med |       Q3 |   Max |
|-------------------+--------+----------+---------+----------+-------|
| Xc - Xo (mm)      | -1.681 |  -0.4675 | -0.2047 |   0.3707 | 1.383 |
| Yc - Yo (mm)      | -1.731 |  -0.6009 | -0.2953 | -0.00193 | 2.226 |
| Phic - Phio (deg) | -1.707 | -0.08649 | 0.01357 |   0.1076 | 2.149 |
| X weights         |  226.7 |      388 |   398.7 |    403.7 | 405.6 |
| Y weights         |  211.5 |    373.8 |   393.2 |    402.4 | 405.6 |
| Phi weights       |  39.33 |    47.93 |      48 |       48 |    48 |
+-------------------+--------+----------+---------+----------+-------+

Detecting centroid outliers using the Tukey algorithm
3106 reflections have been flagged as outliers
90710 reflections remain in the manager

Summary statistics for 90710 observations matched to predictions:
+-------------------+--------+----------+---------+----------+--------+
|                   |    Min |       Q1 |     Med |       Q3 |    Max |
|-------------------+--------+----------+---------+----------+--------|
| Xc - Xo (mm)      | -1.681 |  -0.4729 | -0.2157 |   0.3737 |  1.383 |
| Yc - Yo (mm)      | -1.583 |  -0.6121 | -0.3087 | -0.03742 |  1.006 |
| Phic - Phio (deg) | -0.423 | -0.08685 | 0.01122 |   0.1031 | 0.4516 |
| X weights         |  226.7 |    388.5 |   398.9 |    403.7 |  405.6 |
| Y weights         |  211.5 |    374.3 |   393.6 |    402.6 |  405.6 |
| Phi weights       |  39.33 |    47.94 |      48 |       48 |     48 |
+-------------------+--------+----------+---------+----------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.56197  | 0.55131  |    0.13413 |
|      1 |  36000 | 0.24338  | 0.26503  |    0.15575 |
|      2 |  36000 | 0.10648  | 0.13198  |    0.13476 |
|      3 |  36000 | 0.055785 | 0.059567 |    0.10888 |
|      4 |  36000 | 0.051066 | 0.052336 |    0.10514 |
|      5 |  36000 | 0.050906 | 0.052372 |    0.10505 |
|      6 |  36000 | 0.050901 | 0.052378 |    0.10505 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.29594 |  0.30452 |     0.2101 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (93847 reflections):
Crystal:
    Unit cell: 40.5519(7), 40.5591(7), 69.2964(13), 92.0155(4), 91.9752(4), 98.0783(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1750,  0.9672},
                { 0.5056, -0.8270,  0.2459}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |       93847 |          1286 | 98.6%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.71 Angstrom

Indexed crystal models:
model 1 (101813 reflections):
Crystal:
    Unit cell: 40.5519(7), 40.5591(7), 69.2964(13), 92.0155(4), 91.9752(4), 98.0783(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1750,  0.9672},
                { 0.5056, -0.8270,  0.2459}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      102009 |           413 | 99.6%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 2)
################################################################################


Summary statistics for 101460 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.3659 | -0.03707 |  -0.002529 | 0.03158 | 0.3623 |
| Yc - Yo (mm)      | -0.8234 | -0.03127 | -0.0002209 | 0.03123 | 0.9301 |
| Phic - Phio (deg) | -0.8541 |  -0.0814 |  0.0005383 | 0.08299 |  1.311 |
| X weights         |   226.7 |    384.8 |      397.6 |   403.4 |  405.6 |
| Y weights         |   173.8 |    369.2 |        391 |   401.9 |  405.6 |
| Phi weights       |   39.33 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
4886 reflections have been flagged as outliers
96574 reflections remain in the manager

Summary statistics for 96574 observations matched to predictions:
+-------------------+---------+----------+-----------+---------+--------+
|                   |     Min |       Q1 |       Med |      Q3 |    Max |
|-------------------+---------+----------+-----------+---------+--------|
| Xc - Xo (mm)      | -0.1672 | -0.03646 | -0.002887 | 0.03019 |  0.159 |
| Yc - Yo (mm)      | -0.1632 | -0.03001 | -0.000363 | 0.02939 | 0.1893 |
| Phic - Phio (deg) | -0.3509 | -0.08067 | 0.0001275 | 0.08135 | 0.3266 |
| X weights         |   226.7 |    386.4 |     398.2 |   403.6 |  405.6 |
| Y weights         |   211.5 |    371.9 |     392.3 |   402.2 |  405.6 |
| Phi weights       |   40.76 |    47.94 |        48 |      48 |     48 |
+-------------------+---------+----------+-----------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.048834 | 0.046981 |    0.10531 |
|      1 |  36000 | 0.048722 | 0.046957 |    0.10525 |
|      2 |  36000 | 0.048696 | 0.04698  |    0.10522 |
|      3 |  36000 | 0.048684 | 0.046993 |    0.1052  |
|      4 |  36000 | 0.048681 | 0.046997 |    0.1052  |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28303 |  0.27324 |     0.2104 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (101813 reflections):
Crystal:
    Unit cell: 40.5520(6), 40.5588(6), 69.2953(10), 92.0189(4), 91.9731(4), 98.0772(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      101813 |           609 | 99.4%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.57 Angstrom

Indexed crystal models:
model 1 (105712 reflections):
Crystal:
    Unit cell: 40.5520(6), 40.5588(6), 69.2953(10), 92.0189(4), 91.9731(4), 98.0772(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      105724 |           686 | 99.4%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 3)
################################################################################


Summary statistics for 105342 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.3602 | -0.03583 | -0.0009226 | 0.03338 | 0.3599 |
| Yc - Yo (mm)      |  -1.133 | -0.03272 | -0.0005848 | 0.03157 |  1.468 |
| Phic - Phio (deg) |  -0.988 | -0.08148 |   0.001034 | 0.08422 |  1.291 |
| X weights         |   210.9 |    382.8 |      397.1 |   403.3 |  405.6 |
| Y weights         |   173.8 |    366.4 |      389.9 |   401.7 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5469 reflections have been flagged as outliers
99873 reflections remain in the manager

Summary statistics for 99873 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1752 | -0.03485 |   -0.00104 | 0.03209 | 0.1659 |
| Yc - Yo (mm)      | -0.1713 | -0.03096 | -0.0005444 | 0.02996 |  0.198 |
| Phic - Phio (deg) | -0.3535 | -0.08055 |  0.0006649 | 0.08254 | 0.3272 |
| X weights         |   210.9 |    384.7 |      397.7 |   403.4 |  405.6 |
| Y weights         |   211.5 |    369.5 |      391.3 |     402 |  405.6 |
| Phi weights       |   39.29 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049172 | 0.04859  |    0.10641 |
|      1 |  36000 | 0.049153 | 0.04854  |    0.10638 |
|      2 |  36000 | 0.049152 | 0.048515 |    0.10639 |
|      3 |  36000 | 0.049155 | 0.048503 |    0.1064  |
|      4 |  36000 | 0.049156 | 0.0485   |    0.1064  |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28579 |  0.28197 |    0.21281 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (105712 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5583(5), 69.2938(9), 92.0190(3), 91.9725(3), 98.0761(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      105712 |           699 | 99.3%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.43 Angstrom

Indexed crystal models:
model 1 (107089 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5583(5), 69.2938(9), 92.0190(3), 91.9725(3), 98.0761(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107097 |           723 | 99.3%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 4)
################################################################################


Summary statistics for 106715 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.939 |   -0.036 | -0.0006477 | 0.03379 | 0.3619 |
| Yc - Yo (mm)      |  -1.114 | -0.03302 | -0.0004506 | 0.03208 |  1.479 |
| Phic - Phio (deg) | -0.9716 | -0.08205 |  0.0008108 | 0.08438 |  1.301 |
| X weights         |     194 |      382 |      396.8 |   403.2 |  405.6 |
| Y weights         |   173.5 |    365.2 |      389.4 |   401.6 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5604 reflections have been flagged as outliers
101111 reflections remain in the manager

Summary statistics for 101111 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1747 | -0.03501 | -0.0007897 | 0.03243 | 0.1648 |
| Yc - Yo (mm)      | -0.1716 | -0.03118 | -0.0004102 | 0.03034 | 0.1979 |
| Phic - Phio (deg) | -0.3525 | -0.08096 |  0.0004804 | 0.08264 | 0.3495 |
| X weights         |   210.9 |      384 |      397.6 |   403.4 |  405.6 |
| Y weights         |   191.7 |    368.6 |      390.9 |   401.9 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049499 | 0.048536 |    0.1067  |
|      1 |  36000 | 0.049483 | 0.048491 |    0.10673 |
|      2 |  36000 | 0.049474 | 0.048479 |    0.10676 |
|      3 |  36000 | 0.049473 | 0.048472 |    0.10677 |
|      4 |  36000 | 0.049473 | 0.04847  |    0.10677 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28764 |   0.2818 |    0.21355 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (107089 reflections):
Crystal:
    Unit cell: 40.5513(5), 40.5578(5), 69.2911(8), 92.0192(3), 91.9728(3), 98.0758(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107089 |           731 | 99.3%       |
+------------+-------------+---------------+-------------+
Increasing resolution to 1.29 Angstrom

Indexed crystal models:
model 1 (107264 reflections):
Crystal:
    Unit cell: 40.5513(5), 40.5578(5), 69.2911(8), 92.0192(3), 91.9728(3), 98.0758(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107277 |           720 | 99.3%       |
+------------+-------------+---------------+-------------+

################################################################################
Starting refinement (macro-cycle 5)
################################################################################


Summary statistics for 106891 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.937 | -0.03563 | -0.0001711 | 0.03425 | 0.3641 |
| Yc - Yo (mm)      |  -1.104 | -0.03295 | -0.0004634 |  0.0322 |  1.517 |
| Phic - Phio (deg) | -0.9614 | -0.08213 |  0.0006723 | 0.08443 |  1.308 |
| X weights         |     194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |   143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

Detecting centroid outliers using the Tukey algorithm
5626 reflections have been flagged as outliers
101265 reflections remain in the manager

Summary statistics for 101265 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1732 |  -0.0347 | -0.0003111 | 0.03288 | 0.1637 |
| Yc - Yo (mm)      | -0.1724 | -0.03122 | -0.0004946 | 0.03034 |  0.201 |
| Phic - Phio (deg) | -0.3539 | -0.08118 |  0.0003692 | 0.08282 | 0.3509 |
| X weights         |   210.9 |    383.9 |      397.5 |   403.4 |  405.6 |
| Y weights         |   143.8 |    368.4 |      390.9 |   401.9 |  405.6 |
| Phi weights       |   39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 16 parameters to refine against 36000 reflections in 3 dimensions

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.049518 | 0.04852  |    0.10693 |
|      1 |  36000 | 0.049498 | 0.048528 |    0.10688 |
|      2 |  36000 | 0.049495 | 0.048535 |    0.10686 |
|      3 |  36000 | 0.049494 | 0.048537 |    0.10686 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  36000 |  0.28776 |  0.28219 |    0.21371 |
+-------+--------+----------+----------+------------+

Refined crystal models:
model 1 (107264 reflections):
Crystal:
    Unit cell: 40.5519(5), 40.5585(5), 69.2922(8), 92.0198(3), 91.9722(3), 98.0759(4)
    Space group: P 1
    U matrix:  {{ 0.8429,  0.5343,  0.0638},
                {-0.1841,  0.1749,  0.9672},
                { 0.5056, -0.8270,  0.2458}}
    B matrix:  {{ 0.0247,  0.0000,  0.0000},
                { 0.0035,  0.0249,  0.0000},
                { 0.0010,  0.0010,  0.0145}}
    A = UB:    {{ 0.0227,  0.0134,  0.0009},
                {-0.0030,  0.0053,  0.0140},
                { 0.0098, -0.0203,  0.0036}}
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107264 |           733 | 99.3%       |
+------------+-------------+---------------+-------------+
Saving refined experiments to indexed.expt
Saving refined reflections to indexed.refl

If successful, dials.index writes two output data files - an indexed.expt containing the tuned experimental model and determined parameters, and a indexed.refl reflection file, including index data from the best fit.

It is worth reading through this output to understand what the indexing program has done. Note that this log is automatically captured in the file dials.index.log. A more verbose debug log can be generated by adding the ‘-v’ option to a dials command line program, but this is probably only helpful if something has gone wrong and you are trying to track down why.

Inspecting the beginning of the log shows that the indexing step is done at a resolution lower than the full dataset; 1.84 Å:

 9
10
11
Found max_cell: 94.4 Angstrom
Setting d_min: 1.84
FFT gridding: (256,256,256)

The resolution limit of data that can be used in indexing is determined by the size of the 3D FFT grid, and the likely maximum cell dimension. Here we used the default 256³ grid points. These are used to make an initial estimate for the unit cell parameters.

What then follows are ‘macro-cycles’ of refinement where the experimental model is first tuned to get the best possible fit from the data, and then the resolution limit is reduced to cover more data than the previous cycle. 16 parameters of the diffraction geometry are tuned - 6 for the detector, one for beam angle, 3 crystal orientation angles and the 6 triclinic cell parameters. At each stage only 36000 reflections are used in the refinement job. In order to save time, a subset of the input reflections are used - by default using 100 reflections for every degree of the 360° scan.

We see that the first macrocycle of refinement makes a big improvement in the positional RMSDs:

126
127
128
129
130
131
132
133
134
135
136
137
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  36000 | 0.56197  | 0.55131  |    0.13413 |
|      1 |  36000 | 0.24338  | 0.26503  |    0.15575 |
|      2 |  36000 | 0.10648  | 0.13198  |    0.13476 |
|      3 |  36000 | 0.055785 | 0.059567 |    0.10888 |
|      4 |  36000 | 0.051066 | 0.052336 |    0.10514 |
|      5 |  36000 | 0.050906 | 0.052372 |    0.10505 |
|      6 |  36000 | 0.050901 | 0.052378 |    0.10505 |
+--------+--------+----------+----------+------------+

Second and subsequent macrocycles are refined using the same number of reflections, but after extending to higher resolution. The RMSDs at the start of each cycle start off worse than at the end of the previous cycle, because the best fit model for lower resolution data is being applied to higher resolution reflections. As long as each macrocyle shows a reduction in RMSDs then refinement is doing its job of extending the applicability of the model out to a new resolution limit, until eventually the highest resolution strong spots have been included. The final macrocycle includes data out to 1.30 Å and produces a final model with RMSDs of 0.050 mm in X, 0.049 mm in Y and 0.104° in φ, corresponding to 0.29 pixels in X, 0.28 pixels in Y and 0.21 image widths in φ.

Despite the high quality of this data, we notice from the log that at each macrocycle there were some outliers identified and removed from refinement as resolution increases. Large outliers can dominate refinement using a least squares target, so it is important to be able to remove these. More about this is discussed below in Refinement. It’s also worth checking the total number of reflections that were unable to be assigned an index:

549
550
551
552
553
+------------+-------------+---------------+-------------+
|   Imageset |   # indexed |   # unindexed | % indexed   |
|------------+-------------+---------------+-------------|
|          0 |      107264 |           733 | 99.3%       |
+------------+-------------+---------------+-------------+

because this can be an indication of poor data quality or a sign that more care needs to be taken in selecting the strategy used by dials.index.

After indexing it can be useful to inspect the reciprocal lattice again:

dials.reciprocal_lattice_viewer indexed.expt indexed.refl

Now indexed/unindexed spots are differentiated by colour, and it is possible to see which spots were marked by dials.refine as outliers. If you have a dataset with multiple lattices present, it may be possible to spot them in the unindexed reflections.

In this case, we can see that the refinement has clearly resolved whatever systematic error was causing distortions in the reciprocal space view, and the determined reciprocal unit cell fits the data well:

../../_images/reciprocal_lattice_indexed.png

Bravais Lattice Refinement

Since we didn’t know the Bravais lattice before indexing, we can now use dials.refine_bravais_settings to determine likely candidates. This takes the results of the P1 autoindexing and runs refinement with all of the possible Bravais settings applied, allowing you to choose your preferred solution:

dials.refine_bravais_settings indexed.expt indexed.refl

giving a table containing scoring data and unit cell for each Bravais setting:

Chiral space groups corresponding to each Bravais lattice:
aP: P1
mP: P2 P21
mC: C2
oC: C2221 C222
+------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------+
|   Solution |   Metric fit |   rmsd | min/max cc   |   #spots | lattice   | unit_cell                                |   volume | cb_op      |
|------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------|
|          5 |       3.0457 |  2.375 | 0.604/0.968  |    35999 | oC        | 52.59  60.69  68.41  90.00  90.00  90.00 |   218334 | a+b,-a+b,c |
|          4 |       3.0455 |  2.384 | 0.609/0.609  |    35999 | mC        | 60.65  52.58  68.39  90.00  89.94  90.00 |   218080 | a-b,a+b,c  |
|          3 |       3.0457 |  2.378 | 0.604/0.604  |    36000 | mP        | 40.14  68.34  40.09  90.00  98.16  90.00 |   108857 | -a,-c,-b   |
|   *      2 |       0.0326 |  0.072 | 0.968/0.968  |    36000 | mC        | 53.17  61.25  69.29  90.00  93.05  90.00 |   225340 | a+b,-a+b,c |
|   *      1 |       0      |  0.07  | -/-          |    36000 | aP        | 40.55  40.56  69.29  92.02  91.97  98.08 |   112674 | a,b,c      |
+------------+--------------+--------+--------------+----------+-----------+------------------------------------------+----------+------------+
* = recommended solution

Saving summary as bravais_summary.json
Saving solution 5 as bravais_setting_5.expt
Saving solution 4 as bravais_setting_4.expt
Saving solution 3 as bravais_setting_3.expt
Saving solution 2 as bravais_setting_2.expt
Saving solution 1 as bravais_setting_1.expt

The scores include the metric fit (in degrees), RMSDs (in mm), and the best and worse correlation coefficients for data related by symmetry elements implied by the lowest symmetry space group from the Bravais setting. This uses the raw spot intensity measurement from the spot- finding procedure (uncorrected and unscaled) but provides a very useful check to see if the data does appear to adhere to the proposed symmetry operators.

A separate bravais_setting_N.expt experiments file is written for each plausible lattice type, corresponding to the solution index. In this example we choose to continue processing with bravais_setting_2.expt, which is the highest symmetry suggested result - the options 3, 4, 5 have higher symmetries, but at the cost of a steep jump in RMSd’s and worsening of fit.

In cases where the change of basis operator to the chosen setting is the identity operator (a,b,c) we can proceed directly to further refinement. However, we notice that the change of basis operator for our chosen solution is a+b,-a+b,c, so it is necessary to reindex the indexed.refl file output by using dials.reindex:

dials.reindex indexed.refl change_of_basis_op=a+b,-a+b,c

This outputs the file reindexed.refl which we now use as input to downstream programs, in place of the original indexed.refl.

Refinement

The model is already refined during indexing, but we can also add explicit refinement steps using dials.refine in here, to use all reflections in refinement rather than a subset and to fit a scan-varying model of the crystal. There are many options to refinement - to show all the options up to and including expert_level=1 use this command:

dials.refine -c -e 1

and descriptions of each of the options can be included by adding -a1 to the command. All of the main DIALS tools have equivalent command-line options to list available options.

To refine a static model including the monoclinic constraints from dials.refine_bravais_settings run:

dials.refine bravais_setting_2.expt reindexed.refl scan_varying=false

Show/Hide Log

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

refinement {
  parameterisation {
    scan_varying = False
  }
}
input {
  experiments = bravais_setting_2.expt
  reflections = reindexed.refl
}

Configuring refiner

Summary statistics for 106891 observations matched to predictions:
+-------------------+--------+----------+------------+---------+--------+
|                   |    Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+--------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -1.948 | -0.03532 | -7.621e-05 | 0.03409 | 0.3577 |
| Yc - Yo (mm)      | -1.174 | -0.03515 | -0.0003891 | 0.03422 |  1.681 |
| Phic - Phio (deg) | -1.047 | -0.08285 |  0.0008039 | 0.08427 |  1.356 |
| X weights         |    194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |  143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |  39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+--------+----------+------------+---------+--------+

Detecting centroid outliers using the MCD algorithm
11193 reflections have been flagged as outliers
95698 reflections remain in the manager

Summary statistics for 95698 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1758 | -0.03396 |  -0.001026 | 0.03026 | 0.1723 |
| Yc - Yo (mm)      | -0.1843 | -0.03204 | -0.0007666 | 0.02984 | 0.2342 |
| Phic - Phio (deg) | -0.3632 | -0.07953 |   0.000807 | 0.08146 | 0.3193 |
| X weights         |   210.9 |    385.4 |      398.2 |   403.6 |  405.6 |
| Y weights         |   143.8 |    370.6 |      392.1 |   402.2 |  405.6 |
| Phi weights       |   40.76 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 14 parameters to refine against 95698 reflections in 3 dimensions
Performing refinement of a single Experiment...

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  95698 | 0.046351 | 0.048046 |    0.10464 |
|      1 |  95698 | 0.046288 | 0.04797  |    0.10468 |
|      2 |  95698 | 0.046268 | 0.047948 |    0.10474 |
|      3 |  95698 | 0.046272 | 0.047935 |    0.10476 |
|      4 |  95698 | 0.046276 | 0.04793  |    0.10476 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  95698 |  0.26904 |  0.27867 |    0.20952 |
+-------+--------+----------+----------+------------+
Updating predictions for indexed reflections

Final refined crystal model:
Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                { 0.0000,  0.0163,  0.0000},
                { 0.0010,  0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
Saving refined experiments to refined.expt
Saving reflections with updated predictions to refined.refl

This uses all reflections in refinement rather than a subset and provided a small reduction in RMSDs, writing the results out to refined.expt and refined.refl.

However, the refined model is still static over the whole dataset. We may want to do an additional refinement job to fit a more sophisticated model for the crystal, allowing small misset rotations to occur over the course of the scan. There are usually even small changes to the cell dimensions (typically resulting in a net increase in cell volume) caused by exposure to radiation during data collection. To account for both of these effects we can extend our parameterisation to obtain a smoothed scan-varying model for both the crystal orientation and unit cell. This means running a further refinement job starting from the output of the previous job:

dials.refine refined.expt refined.refl scan_varying=true

Show/Hide Log

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

refinement {
  parameterisation {
    scan_varying = True
  }
}
input {
  experiments = refined.expt
  reflections = refined.refl
}

Configuring refiner

Summary statistics for 106889 observations matched to predictions:
+-------------------+--------+----------+------------+---------+--------+
|                   |    Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+--------+----------+------------+---------+--------|
| Xc - Xo (mm)      |  -1.94 | -0.03432 |  0.0006267 | 0.03483 | 0.3635 |
| Yc - Yo (mm)      | -1.181 | -0.03496 | -9.466e-05 | 0.03451 |  1.727 |
| Phic - Phio (deg) | -1.061 |  -0.0839 |  3.415e-05 | 0.08361 |  1.378 |
| X weights         |    194 |    381.9 |      396.8 |   403.2 |  405.6 |
| Y weights         |  143.8 |    365.1 |      389.4 |   401.6 |  405.6 |
| Phi weights       |  39.29 |    47.95 |         48 |      48 |     48 |
+-------------------+--------+----------+------------+---------+--------+

Detecting centroid outliers using the MCD algorithm
11474 reflections have been flagged as outliers
95415 reflections remain in the manager

Summary statistics for 95415 observations matched to predictions:
+-------------------+---------+----------+------------+---------+--------+
|                   |     Min |       Q1 |        Med |      Q3 |    Max |
|-------------------+---------+----------+------------+---------+--------|
| Xc - Xo (mm)      | -0.1597 | -0.03294 |  -0.000389 | 0.03063 | 0.1746 |
| Yc - Yo (mm)      | -0.1822 |  -0.0315 | -0.0003536 | 0.03033 | 0.2338 |
| Phic - Phio (deg) | -0.3681 | -0.08071 | -7.198e-05 | 0.08054 | 0.3162 |
| X weights         |   210.9 |    385.5 |      398.2 |   403.6 |  405.6 |
| Y weights         |   143.8 |    370.7 |      392.1 |   402.3 |  405.6 |
| Phi weights       |   40.76 |    47.94 |         48 |      48 |     48 |
+-------------------+---------+----------+------------+---------+--------+

There are 91 parameters to refine against 95415 reflections in 3 dimensions
Performing refinement of a single Experiment...

Refinement steps:
+--------+--------+----------+----------+------------+
|   Step |   Nref |   RMSD_X |   RMSD_Y |   RMSD_Phi |
|        |        |     (mm) |     (mm) |      (deg) |
|--------+--------+----------+----------+------------|
|      0 |  95415 | 0.045994 | 0.047882 |    0.1047  |
|      1 |  95415 | 0.043137 | 0.040683 |    0.10342 |
|      2 |  95415 | 0.041146 | 0.039717 |    0.1028  |
|      3 |  95415 | 0.040602 | 0.039511 |    0.10247 |
|      4 |  95415 | 0.040487 | 0.039501 |    0.10226 |
|      5 |  95415 | 0.040464 | 0.039497 |    0.10216 |
|      6 |  95415 | 0.040459 | 0.039496 |    0.10214 |
|      7 |  95415 | 0.040458 | 0.039497 |    0.10214 |
+--------+--------+----------+----------+------------+
RMSD no longer decreasing

RMSDs by experiment:
+-------+--------+----------+----------+------------+
|   Exp |   Nref |   RMSD_X |   RMSD_Y |     RMSD_Z |
|    id |        |     (px) |     (px) |   (images) |
|-------+--------+----------+----------+------------|
|     0 |  95415 |  0.23522 |  0.22963 |    0.20428 |
+-------+--------+----------+----------+------------+
Updating predictions for indexed reflections

Final refined crystal model:
Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                { 0.0000,  0.0163,  0.0000},
                { 0.0010,  0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
    A sampled at 721 scan points
Saving refined experiments to refined.expt
Saving reflections with updated predictions to refined.refl

which writes over the refined.expt and refined.refl from the previous refinement step. By default the scan-varying refinement looks for smooth changes over an interval of 36° intervals, to avoid fitting unphysical models to noise, though this parameter can be tuned. We can use the HTML report, described shortly, to view the results of fitting to smoothly varying crystal cell parameters:

../../_images/scan_varying.png

In this tutorial, we see no overall increase in all three cell parameters. If significant cell volume increases had been observed that might be indicative of radiation damage. However we can’t yet conclude that there is no radiation damage from the lack of considerable change observed.

Integration

After the refinement is done the next step is integration, which is performed by the program dials.integrate. Mostly, the default parameters are fine for Pilatus data, which will perform XDS-like 3D profile fitting while using a generalized linear model in order to fit a Poisson-distributed background model. We will also increase the number of processors used to speed the job up.

dials.integrate refined.expt refined.refl nproc=4

Show/Hide Log

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:
integration {
  mp {
    nproc = 4
  }
}
input {
  experiments = refined.expt
  reflections = refined.refl
}


================================================================================

Experiments

Models for experiment 0

Beam:
    wavelength: 1.23985
    sample to source direction : {0.000829704,-0,1}
    divergence: 0
    sigma divergence: 0
    polarization normal: {0,1,0}
    polarization fraction: 0.999

Detector:
Panel:
  name: Panel
  type: SENSOR_PAD
  identifier: 
  pixel_size:{0.172,0.172}
  image_size: {2463,2527}
  trusted_range: {-1,1.22424e+06}
  thickness: 0.32
  material: Si
  mu: 7.89652
  gain: 1
  pedestal: 0
  fast_axis: {0.999913,-0.005565,-0.0119294}
  slow_axis: {-0.00567791,-0.999939,-0.00945161}
  origin: {-217.505,210.385,-164.522}
  distance: 169.088
  pixel to millimeter strategy: ParallaxCorrectedPxMmStrategy
    mu: 7.89652
    t0: 0.32

Goniometer:
    Rotation axis:   {1,0,0}
    Fixed rotation:  {0.965028,0.0598562,-0.255222,-0.128604,-0.74028,-0.659883,-0.228434,0.669628,-0.706694}
    Setting rotation:{1,0,0,0,1,0,0,0,1}
    Axis #0 (GON_PHI):  {1,0,0}
    Axis #1 (GON_KAPPA):  {0.914,0.279,-0.297}
    Axis #2 (GON_OMEGA):  {1,0,0}
    Angles: 102.6,37.9,0
    scan axis: #2 (GON_OMEGA)

Scan:
    image range:   {1,720}
    oscillation:   {0,0.5}
    exposure time: 0.5

Crystal:
    Unit cell: 53.1698(3), 61.2427(5), 69.2884(5), 90.0, 93.04558(17), 90.0
    Space group: C 1 2 1
    U matrix:  {{ 0.9560, -0.2863,  0.0639},
                { 0.0114,  0.2539,  0.9672},
                {-0.2931, -0.9239,  0.2460}}
    B matrix:  {{ 0.0188,  0.0000,  0.0000},
                { 0.0000,  0.0163,  0.0000},
                { 0.0010, -0.0000,  0.0145}}
    A = UB:    {{ 0.0180, -0.0047,  0.0009},
                { 0.0012,  0.0041,  0.0140},
                {-0.0053, -0.0151,  0.0036}}
    A sampled at 721 scan points

================================================================================

Initialising
Processing reference reflections
 read 107999 strong spots
 removing 735 unindexed reflections
 removing 11850 reflections marked as bad for refinement
 using 95414 indexed reflections
 found 12585 junk reflections
 masked neighbouring pixels in 4 shoeboxes

================================================================================

Predicting reflections
Prediction type: scan varying crystal prediction
Predicted 368592 reflections
Matching reference spots with predicted reflections
 95414 observed reflections input
 368592 reflections predicted
 95414 reflections matched
 95414 reflections accepted
Using 95414 / 95414 reflections for sigma calculation
Calculating E.S.D Beam Divergence.
Calculating E.S.D Reflecting Range (mosaicity).
 sigma b: 0.044176 degrees
 sigma m: 0.057791 degrees
================================================================================

Processing reflections

 Processing the following experiments:

 Experiments: 1
 Beams:       1
 Detectors:   1
 Goniometers: 1
 Scans:       1
 Crystals:    1
 Imagesets:   1

================================================================================

Modelling reflection profiles

 Split 1795 reflections overlapping job boundaries

Memory situation report:
  Available system memory (excluding swap)          : 14.1 GB
  Available swap memory                             :  6.1 GB
  Available system memory (including swap)          : 20.2 GB
  Maximum memory for processing (including swap)    : 18.1 GB
  Maximum memory for processing (excluding swap)    : 12.7 GB
  Memory required per process                       :  0.0 GB
  no memory ulimit set

Processing reflections in the following blocks of images:

 block_size: 6 frames

+-----+---------+--------------+------------+--------------+------------+-----------------+
|   # |   Group |   Frame From |   Frame To |   Angle From |   Angle To |   # Reflections |
|-----+---------+--------------+------------+--------------+------------+-----------------|
|   0 |       0 |            1 |          6 |          0   |        3   |             696 |
|   1 |       0 |            4 |          9 |          1.5 |        4.5 |             440 |
|   2 |       0 |            7 |         12 |          3   |        6   |             444 |
|   3 |       0 |           10 |         15 |          4.5 |        7.5 |             439 |
|   4 |       0 |           13 |         18 |          6   |        9   |             423 |
|   5 |       0 |           16 |         21 |          7.5 |       10.5 |             434 |
|   6 |       0 |           19 |         24 |          9   |       12   |             458 |
|   7 |       0 |           22 |         27 |         10.5 |       13.5 |             428 |
|   8 |       0 |           25 |         30 |         12   |       15   |             455 |
|   9 |       0 |           28 |         33 |         13.5 |       16.5 |             463 |
|  10 |       0 |           31 |         36 |         15   |       18   |             450 |
|  11 |       0 |           34 |         39 |         16.5 |       19.5 |             421 |
|  12 |       0 |           37 |         42 |         18   |       21   |             452 |
|  13 |       0 |           40 |         45 |         19.5 |       22.5 |             443 |
|  14 |       0 |           43 |         48 |         21   |       24   |             434 |
|  15 |       0 |           46 |         51 |         22.5 |       25.5 |             448 |
|  16 |       0 |           49 |         54 |         24   |       27   |             426 |
|  17 |       0 |           52 |         57 |         25.5 |       28.5 |             440 |
|  18 |       0 |           55 |         60 |         27   |       30   |             429 |
|  19 |       0 |           58 |         63 |         28.5 |       31.5 |             436 |
|  20 |       0 |           61 |         66 |         30   |       33   |             412 |
|  21 |       0 |           64 |         69 |         31.5 |       34.5 |             471 |
|  22 |       0 |           67 |         72 |         33   |       36   |             449 |
|  23 |       0 |           70 |         75 |         34.5 |       37.5 |             423 |
|  24 |       0 |           73 |         78 |         36   |       39   |             460 |
|  25 |       0 |           76 |         81 |         37.5 |       40.5 |             451 |
|  26 |       0 |           79 |         84 |         39   |       42   |             439 |
|  27 |       0 |           82 |         87 |         40.5 |       43.5 |             474 |
|  28 |       0 |           85 |         90 |         42   |       45   |             445 |
|  29 |       0 |           88 |         93 |         43.5 |       46.5 |             460 |
|  30 |       0 |           91 |         96 |         45   |       48   |             446 |
|  31 |       0 |           94 |         99 |         46.5 |       49.5 |             473 |
|  32 |       0 |           97 |        102 |         48   |       51   |             418 |
|  33 |       0 |          100 |        105 |         49.5 |       52.5 |             485 |
|  34 |       0 |          103 |        108 |         51   |       54   |             474 |
|  35 |       0 |          106 |        111 |         52.5 |       55.5 |             471 |
|  36 |       0 |          109 |        114 |         54   |       57   |             456 |
|  37 |       0 |          112 |        117 |         55.5 |       58.5 |             454 |
|  38 |       0 |          115 |        120 |         57   |       60   |             482 |
|  39 |       0 |          118 |        123 |         58.5 |       61.5 |             433 |
|  40 |       0 |          121 |        126 |         60   |       63   |             458 |
|  41 |       0 |          124 |        129 |         61.5 |       64.5 |             478 |
|  42 |       0 |          127 |        132 |         63   |       66   |             454 |
|  43 |       0 |          130 |        135 |         64.5 |       67.5 |             435 |
|  44 |       0 |          133 |        138 |         66   |       69   |             441 |
|  45 |       0 |          136 |        141 |         67.5 |       70.5 |             446 |
|  46 |       0 |          139 |        144 |         69   |       72   |             415 |
|  47 |       0 |          142 |        147 |         70.5 |       73.5 |             420 |
|  48 |       0 |          145 |        150 |         72   |       75   |             442 |
|  49 |       0 |          148 |        153 |         73.5 |       76.5 |             423 |
|  50 |       0 |          151 |        156 |         75   |       78   |             413 |
|  51 |       0 |          154 |        159 |         76.5 |       79.5 |             449 |
|  52 |       0 |          157 |        162 |         78   |       81   |             410 |
|  53 |       0 |          160 |        165 |         79.5 |       82.5 |             411 |
|  54 |       0 |          163 |        168 |         81   |       84   |             424 |
|  55 |       0 |          166 |        171 |         82.5 |       85.5 |             403 |
|  56 |       0 |          169 |        174 |         84   |       87   |             446 |
|  57 |       0 |          172 |        177 |         85.5 |       88.5 |             417 |
|  58 |       0 |          175 |        180 |         87   |       90   |             399 |
|  59 |       0 |          178 |        183 |         88.5 |       91.5 |             413 |
|  60 |       0 |          181 |        186 |         90   |       93   |             394 |
|  61 |       0 |          184 |        189 |         91.5 |       94.5 |             379 |
|  62 |       0 |          187 |        192 |         93   |       96   |             397 |
|  63 |       0 |          190 |        195 |         94.5 |       97.5 |             390 |
|  64 |       0 |          193 |        198 |         96   |       99   |             431 |
|  65 |       0 |          196 |        201 |         97.5 |      100.5 |             372 |
|  66 |       0 |          199 |        204 |         99   |      102   |             392 |
|  67 |       0 |          202 |        207 |        100.5 |      103.5 |             370 |
|  68 |       0 |          205 |        210 |        102   |      105   |             380 |
|  69 |       0 |          208 |        213 |        103.5 |      106.5 |             369 |
|  70 |       0 |          211 |        216 |        105   |      108   |             369 |
|  71 |       0 |          214 |        219 |        106.5 |      109.5 |             355 |
|  72 |       0 |          217 |        222 |        108   |      111   |             380 |
|  73 |       0 |          220 |        225 |        109.5 |      112.5 |             373 |
|  74 |       0 |          223 |        228 |        111   |      114   |             369 |
|  75 |       0 |          226 |        231 |        112.5 |      115.5 |             365 |
|  76 |       0 |          229 |        234 |        114   |      117   |             369 |
|  77 |       0 |          232 |        237 |        115.5 |      118.5 |             333 |
|  78 |       0 |          235 |        240 |        117   |      120   |             357 |
|  79 |       0 |          238 |        243 |        118.5 |      121.5 |             390 |
|  80 |       0 |          241 |        246 |        120   |      123   |             383 |
|  81 |       0 |          244 |        249 |        121.5 |      124.5 |             370 |
|  82 |       0 |          247 |        252 |        123   |      126   |             390 |
|  83 |       0 |          250 |        255 |        124.5 |      127.5 |             371 |
|  84 |       0 |          253 |        258 |        126   |      129   |             355 |
|  85 |       0 |          256 |        261 |        127.5 |      130.5 |             384 |
|  86 |       0 |          259 |        264 |        129   |      132   |             373 |
|  87 |       0 |          262 |        267 |        130.5 |      133.5 |             355 |
|  88 |       0 |          265 |        270 |        132   |      135   |             433 |
|  89 |       0 |          268 |        273 |        133.5 |      136.5 |             406 |
|  90 |       0 |          271 |        276 |        135   |      138   |             391 |
|  91 |       0 |          274 |        279 |        136.5 |      139.5 |             362 |
|  92 |       0 |          277 |        282 |        138   |      141   |             404 |
|  93 |       0 |          280 |        285 |        139.5 |      142.5 |             388 |
|  94 |       0 |          283 |        288 |        141   |      144   |             388 |
|  95 |       0 |          286 |        291 |        142.5 |      145.5 |             378 |
|  96 |       0 |          289 |        294 |        144   |      147   |             398 |
|  97 |       0 |          292 |        297 |        145.5 |      148.5 |             375 |
|  98 |       0 |          295 |        300 |        147   |      150   |             394 |
|  99 |       0 |          298 |        303 |        148.5 |      151.5 |             404 |
| 100 |       0 |          301 |        306 |        150   |      153   |             366 |
| 101 |       0 |          304 |        309 |        151.5 |      154.5 |             388 |
| 102 |       0 |          307 |        312 |        153   |      156   |             408 |
| 103 |       0 |          310 |        315 |        154.5 |      157.5 |             398 |
| 104 |       0 |          313 |        318 |        156   |      159   |             376 |
| 105 |       0 |          316 |        321 |        157.5 |      160.5 |             404 |
| 106 |       0 |          319 |        324 |        159   |      162   |             373 |
| 107 |       0 |          322 |        327 |        160.5 |      163.5 |             417 |
| 108 |       0 |          325 |        330 |        162   |      165   |             385 |
| 109 |       0 |          328 |        333 |        163.5 |      166.5 |             407 |
| 110 |       0 |          331 |        336 |        165   |      168   |             394 |
| 111 |       0 |          334 |        339 |        166.5 |      169.5 |             376 |
| 112 |       0 |          337 |        342 |        168   |      171   |             432 |
| 113 |       0 |          340 |        345 |        169.5 |      172.5 |             397 |
| 114 |       0 |          343 |        348 |        171   |      174   |             375 |
| 115 |       0 |          346 |        351 |        172.5 |      175.5 |             419 |
| 116 |       0 |          349 |        354 |        174   |      177   |             406 |
| 117 |       0 |          352 |        357 |        175.5 |      178.5 |             419 |
| 118 |       0 |          355 |        360 |        177   |      180   |             413 |
| 119 |       0 |          358 |        363 |        178.5 |      181.5 |             445 |
| 120 |       0 |          361 |        366 |        180   |      183   |             396 |
| 121 |       0 |          364 |        369 |        181.5 |      184.5 |             433 |
| 122 |       0 |          367 |        372 |        183   |      186   |             420 |
| 123 |       0 |          370 |        375 |        184.5 |      187.5 |             406 |
| 124 |       0 |          373 |        378 |        186   |      189   |             419 |
| 125 |       0 |          376 |        381 |        187.5 |      190.5 |             393 |
| 126 |       0 |          379 |        384 |        189   |      192   |             419 |
| 127 |       0 |          382 |        387 |        190.5 |      193.5 |             413 |
| 128 |       0 |          385 |        390 |        192   |      195   |             429 |
| 129 |       0 |          388 |        393 |        193.5 |      196.5 |             428 |
| 130 |       0 |          391 |        396 |        195   |      198   |             434 |
| 131 |       0 |          394 |        399 |        196.5 |      199.5 |             390 |
| 132 |       0 |          397 |        402 |        198   |      201   |             432 |
| 133 |       0 |          400 |        405 |        199.5 |      202.5 |             432 |
| 134 |       0 |          403 |        408 |        201   |      204   |             419 |
| 135 |       0 |          406 |        411 |        202.5 |      205.5 |             420 |
| 136 |       0 |          409 |        414 |        204   |      207   |             424 |
| 137 |       0 |          412 |        417 |        205.5 |      208.5 |             426 |
| 138 |       0 |          415 |        420 |        207   |      210   |             422 |
| 139 |       0 |          418 |        423 |        208.5 |      211.5 |             425 |
| 140 |       0 |          421 |        426 |        210   |      213   |             399 |
| 141 |       0 |          424 |        429 |        211.5 |      214.5 |             435 |
| 142 |       0 |          427 |        432 |        213   |      216   |             442 |
| 143 |       0 |          430 |        435 |        214.5 |      217.5 |             404 |
| 144 |       0 |          433 |        438 |        216   |      219   |             410 |
| 145 |       0 |          436 |        441 |        217.5 |      220.5 |             416 |
| 146 |       0 |          439 |        444 |        219   |      222   |             391 |
| 147 |       0 |          442 |        447 |        220.5 |      223.5 |             430 |
| 148 |       0 |          445 |        450 |        222   |      225   |             405 |
| 149 |       0 |          448 |        453 |        223.5 |      226.5 |             435 |
| 150 |       0 |          451 |        456 |        225   |      228   |             408 |
| 151 |       0 |          454 |        459 |        226.5 |      229.5 |             418 |
| 152 |       0 |          457 |        462 |        228   |      231   |             387 |
| 153 |       0 |          460 |        465 |        229.5 |      232.5 |             434 |
| 154 |       0 |          463 |        468 |        231   |      234   |             442 |
| 155 |       0 |          466 |        471 |        232.5 |      235.5 |             432 |
| 156 |       0 |          469 |        474 |        234   |      237   |             435 |
| 157 |       0 |          472 |        477 |        235.5 |      238.5 |             405 |
| 158 |       0 |          475 |        480 |        237   |      240   |             463 |
| 159 |       0 |          478 |        483 |        238.5 |      241.5 |             381 |
| 160 |       0 |          481 |        486 |        240   |      243   |             397 |
| 161 |       0 |          484 |        489 |        241.5 |      244.5 |             422 |
| 162 |       0 |          487 |        492 |        243   |      246   |             400 |
| 163 |       0 |          490 |        495 |        244.5 |      247.5 |             401 |
| 164 |       0 |          493 |        498 |        246   |      249   |             386 |
| 165 |       0 |          496 |        501 |        247.5 |      250.5 |             393 |
| 166 |       0 |          499 |        504 |        249   |      252   |             371 |
| 167 |       0 |          502 |        507 |        250.5 |      253.5 |             383 |
| 168 |       0 |          505 |        510 |        252   |      255   |             400 |
| 169 |       0 |          508 |        513 |        253.5 |      256.5 |             404 |
| 170 |       0 |          511 |        516 |        255   |      258   |             378 |
| 171 |       0 |          514 |        519 |        256.5 |      259.5 |             398 |
| 172 |       0 |          517 |        522 |        258   |      261   |             390 |
| 173 |       0 |          520 |        525 |        259.5 |      262.5 |             351 |
| 174 |       0 |          523 |        528 |        261   |      264   |             388 |
| 175 |       0 |          526 |        531 |        262.5 |      265.5 |             366 |
| 176 |       0 |          529 |        534 |        264   |      267   |             397 |
| 177 |       0 |          532 |        537 |        265.5 |      268.5 |             369 |
| 178 |       0 |          535 |        540 |        267   |      270   |             346 |
| 179 |       0 |          538 |        543 |        268.5 |      271.5 |             384 |
| 180 |       0 |          541 |        546 |        270   |      273   |             349 |
| 181 |       0 |          544 |        549 |        271.5 |      274.5 |             364 |
| 182 |       0 |          547 |        552 |        273   |      276   |             374 |
| 183 |       0 |          550 |        555 |        274.5 |      277.5 |             353 |
| 184 |       0 |          553 |        558 |        276   |      279   |             384 |
| 185 |       0 |          556 |        561 |        277.5 |      280.5 |             347 |
| 186 |       0 |          559 |        564 |        279   |      282   |             375 |
| 187 |       0 |          562 |        567 |        280.5 |      283.5 |             334 |
| 188 |       0 |          565 |        570 |        282   |      285   |             346 |
| 189 |       0 |          568 |        573 |        283.5 |      286.5 |             348 |
| 190 |       0 |          571 |        576 |        285   |      288   |             347 |
| 191 |       0 |          574 |        579 |        286.5 |      289.5 |             357 |
| 192 |       0 |          577 |        582 |        288   |      291   |             368 |
| 193 |       0 |          580 |        585 |        289.5 |      292.5 |             368 |
| 194 |       0 |          583 |        588 |        291   |      294   |             363 |
| 195 |       0 |          586 |        591 |        292.5 |      295.5 |             367 |
| 196 |       0 |          589 |        594 |        294   |      297   |             375 |
| 197 |       0 |          592 |        597 |        295.5 |      298.5 |             342 |
| 198 |       0 |          595 |        600 |        297   |      300   |             369 |
| 199 |       0 |          598 |        603 |        298.5 |      301.5 |             383 |
| 200 |       0 |          601 |        606 |        300   |      303   |             389 |
| 201 |       0 |          604 |        609 |        301.5 |      304.5 |             360 |
| 202 |       0 |          607 |        612 |        303   |      306   |             391 |
| 203 |       0 |          610 |        615 |        304.5 |      307.5 |             372 |
| 204 |       0 |          613 |        618 |        306   |      309   |             391 |
| 205 |       0 |          616 |        621 |        307.5 |      310.5 |             399 |
| 206 |       0 |          619 |        624 |        309   |      312   |             365 |
| 207 |       0 |          622 |        627 |        310.5 |      313.5 |             354 |
| 208 |       0 |          625 |        630 |        312   |      315   |             430 |
| 209 |       0 |          628 |        633 |        313.5 |      316.5 |             379 |
| 210 |       0 |          631 |        636 |        315   |      318   |             353 |
| 211 |       0 |          634 |        639 |        316.5 |      319.5 |             338 |
| 212 |       0 |          637 |        642 |        318   |      321   |             369 |
| 213 |       0 |          640 |        645 |        319.5 |      322.5 |             337 |
| 214 |       0 |          643 |        648 |        321   |      324   |             361 |
| 215 |       0 |          646 |        651 |        322.5 |      325.5 |             356 |
| 216 |       0 |          649 |        654 |        324   |      327   |             399 |
| 217 |       0 |          652 |        657 |        325.5 |      328.5 |             374 |
| 218 |       0 |          655 |        660 |        327   |      330   |             390 |
| 219 |       0 |          658 |        663 |        328.5 |      331.5 |             417 |
| 220 |       0 |          661 |        666 |        330   |      333   |             391 |
| 221 |       0 |          664 |        669 |        331.5 |      334.5 |             401 |
| 222 |       0 |          667 |        672 |        333   |      336   |             402 |
| 223 |       0 |          670 |        675 |        334.5 |      337.5 |             402 |
| 224 |       0 |          673 |        678 |        336   |      339   |             386 |
| 225 |       0 |          676 |        681 |        337.5 |      340.5 |             407 |
| 226 |       0 |          679 |        684 |        339   |      342   |             390 |
| 227 |       0 |          682 |        687 |        340.5 |      343.5 |             419 |
| 228 |       0 |          685 |        690 |        342   |      345   |             377 |
| 229 |       0 |          688 |        693 |        343.5 |      346.5 |             417 |
| 230 |       0 |          691 |        696 |        345   |      348   |             400 |
| 231 |       0 |          694 |        699 |        346.5 |      349.5 |             398 |
| 232 |       0 |          697 |        702 |        348   |      351   |             427 |
| 233 |       0 |          700 |        705 |        349.5 |      352.5 |             424 |
| 234 |       0 |          703 |        708 |        351   |      354   |             403 |
| 235 |       0 |          706 |        711 |        352.5 |      355.5 |             447 |
| 236 |       0 |          709 |        714 |        354   |      357   |             430 |
| 237 |       0 |          712 |        717 |        355.5 |      358.5 |             461 |
| 238 |       0 |          715 |        720 |        357   |      360   |             648 |
+-----+---------+--------------+------------+--------------+------------+-----------------+

 Using multiprocessing with 4 parallel job(s)


 Frames: 1 -> 6

 Number of reflections
  Partial:     93
  Full:        603
  In ice ring: 0
  Total:       696


 Frames: 4 -> 9

 Number of reflections
  Partial:     9
  Full:        431
  In ice ring: 0
  Total:       440


 Frames: 7 -> 12

 Number of reflections
  Partial:     11
  Full:        433
  In ice ring: 0
  Total:       444


 Frames: 10 -> 15

 Number of reflections
  Partial:     11
  Full:        428
  In ice ring: 0
  Total:       439


 Frames: 13 -> 18

 Number of reflections
  Partial:     7
  Full:        416
  In ice ring: 0
  Total:       423


 Frames: 16 -> 21

 Number of reflections
  Partial:     13
  Full:        421
  In ice ring: 0
  Total:       434


 Frames: 19 -> 24

 Number of reflections
  Partial:     11
  Full:        447
  In ice ring: 0
  Total:       458


 Frames: 22 -> 27

 Number of reflections
  Partial:     13
  Full:        415
  In ice ring: 0
  Total:       428


 Frames: 25 -> 30

 Number of reflections
  Partial:     12
  Full:        443
  In ice ring: 0
  Total:       455


 Frames: 28 -> 33

 Number of reflections
  Partial:     12
  Full:        451
  In ice ring: 0
  Total:       463


 Frames: 31 -> 36

 Number of reflections
  Partial:     6
  Full:        444
  In ice ring: 0
  Total:       450


 Frames: 34 -> 39

 Number of reflections
  Partial:     5
  Full:        416
  In ice ring: 0
  Total:       421


 Frames: 37 -> 42

 Number of reflections
  Partial:     11
  Full:        441
  In ice ring: 0
  Total:       452


 Frames: 40 -> 45

 Number of reflections
  Partial:     10
  Full:        433
  In ice ring: 0
  Total:       443


 Frames: 43 -> 48

 Number of reflections
  Partial:     10
  Full:        424
  In ice ring: 0
  Total:       434


 Frames: 46 -> 51

 Number of reflections
  Partial:     9
  Full:        439
  In ice ring: 0
  Total:       448


 Frames: 49 -> 54

 Number of reflections
  Partial:     6
  Full:        420
  In ice ring: 0
  Total:       426


 Frames: 52 -> 57

 Number of reflections
  Partial:     5
  Full:        435
  In ice ring: 0
  Total:       440


 Frames: 55 -> 60

 Number of reflections
  Partial:     5
  Full:        424
  In ice ring: 0
  Total:       429


 Frames: 58 -> 63

 Number of reflections
  Partial:     5
  Full:        431
  In ice ring: 0
  Total:       436


 Frames: 61 -> 66

 Number of reflections
  Partial:     10
  Full:        402
  In ice ring: 0
  Total:       412


 Frames: 64 -> 69

 Number of reflections
  Partial:     17
  Full:        454
  In ice ring: 0
  Total:       471


 Frames: 67 -> 72

 Number of reflections
  Partial:     12
  Full:        437
  In ice ring: 0
  Total:       449


 Frames: 70 -> 75

 Number of reflections
  Partial:     13
  Full:        410
  In ice ring: 0
  Total:       423


 Frames: 73 -> 78

 Number of reflections
  Partial:     11
  Full:        449
  In ice ring: 0
  Total:       460


 Frames: 76 -> 81

 Number of reflections
  Partial:     9
  Full:        442
  In ice ring: 0
  Total:       451


 Frames: 79 -> 84

 Number of reflections
  Partial:     16
  Full:        423
  In ice ring: 0
  Total:       439


 Frames: 82 -> 87

 Number of reflections
  Partial:     14
  Full:        460
  In ice ring: 0
  Total:       474


 Frames: 85 -> 90

 Number of reflections
  Partial:     9
  Full:        436
  In ice ring: 0
  Total:       445


 Frames: 88 -> 93

 Number of reflections
  Partial:     8
  Full:        452
  In ice ring: 0
  Total:       460


 Frames: 91 -> 96

 Number of reflections
  Partial:     5
  Full:        441
  In ice ring: 0
  Total:       446


 Frames: 94 -> 99

 Number of reflections
  Partial:     15
  Full:        458
  In ice ring: 0
  Total:       473


 Frames: 97 -> 102

 Number of reflections
  Partial:     14
  Full:        404
  In ice ring: 0
  Total:       418


 Frames: 100 -> 105

 Number of reflections
  Partial:     11
  Full:        474
  In ice ring: 0
  Total:       485


 Frames: 103 -> 108

 Number of reflections
  Partial:     13
  Full:        461
  In ice ring: 0
  Total:       474


 Frames: 106 -> 111

 Number of reflections
  Partial:     11
  Full:        460
  In ice ring: 0
  Total:       471


 Frames: 109 -> 114

 Number of reflections
  Partial:     16
  Full:        440
  In ice ring: 0
  Total:       456


 Frames: 112 -> 117

 Number of reflections
  Partial:     14
  Full:        440
  In ice ring: 0
  Total:       454


 Frames: 115 -> 120

 Number of reflections
  Partial:     8
  Full:        474
  In ice ring: 0
  Total:       482


 Frames: 118 -> 123

 Number of reflections
  Partial:     7
  Full:        426
  In ice ring: 0
  Total:       433


 Frames: 121 -> 126

 Number of reflections
  Partial:     12
  Full:        446
  In ice ring: 0
  Total:       458


 Frames: 124 -> 129

 Number of reflections
  Partial:     6
  Full:        472
  In ice ring: 0
  Total:       478


 Frames: 127 -> 132

 Number of reflections
  Partial:     7
  Full:        447
  In ice ring: 0
  Total:       454


 Frames: 130 -> 135

 Number of reflections
  Partial:     13
  Full:        422
  In ice ring: 0
  Total:       435


 Frames: 133 -> 138

 Number of reflections
  Partial:     14
  Full:        427
  In ice ring: 0
  Total:       441


 Frames: 136 -> 141

 Number of reflections
  Partial:     14
  Full:        432
  In ice ring: 0
  Total:       446


 Frames: 139 -> 144

 Number of reflections
  Partial:     9
  Full:        406
  In ice ring: 0
  Total:       415


 Frames: 142 -> 147

 Number of reflections
  Partial:     14
  Full:        406
  In ice ring: 0
  Total:       420


 Frames: 145 -> 150

 Number of reflections
  Partial:     18
  Full:        424
  In ice ring: 0
  Total:       442


 Frames: 148 -> 153

 Number of reflections
  Partial:     7
  Full:        416
  In ice ring: 0
  Total:       423


 Frames: 151 -> 156

 Number of reflections
  Partial:     10
  Full:        403
  In ice ring: 0
  Total:       413


 Frames: 154 -> 159

 Number of reflections
  Partial:     15
  Full:        434
  In ice ring: 0
  Total:       449


 Frames: 157 -> 162

 Number of reflections
  Partial:     7
  Full:        403
  In ice ring: 0
  Total:       410


 Frames: 160 -> 165

 Number of reflections
  Partial:     8
  Full:        403
  In ice ring: 0
  Total:       411


 Frames: 163 -> 168

 Number of reflections
  Partial:     7
  Full:        417
  In ice ring: 0
  Total:       424


 Frames: 166 -> 171

 Number of reflections
  Partial:     10
  Full:        393
  In ice ring: 0
  Total:       403


 Frames: 169 -> 174

 Number of reflections
  Partial:     16
  Full:        430
  In ice ring: 0
  Total:       446


 Frames: 172 -> 177

 Number of reflections
  Partial:     15
  Full:        402
  In ice ring: 0
  Total:       417


 Frames: 175 -> 180

 Number of reflections
  Partial:     8
  Full:        391
  In ice ring: 0
  Total:       399


 Frames: 178 -> 183

 Number of reflections
  Partial:     6
  Full:        407
  In ice ring: 0
  Total:       413


 Frames: 181 -> 186

 Number of reflections
  Partial:     17
  Full:        377
  In ice ring: 0
  Total:       394


 Frames: 184 -> 189

 Number of reflections
  Partial:     13
  Full:        366
  In ice ring: 0
  Total:       379


 Frames: 187 -> 192

 Number of reflections
  Partial:     21
  Full:        376
  In ice ring: 0
  Total:       397


 Frames: 190 -> 195

 Number of reflections
  Partial:     20
  Full:        370
  In ice ring: 0
  Total:       390


 Frames: 193 -> 198

 Number of reflections
  Partial:     15
  Full:        416
  In ice ring: 0
  Total:       431


 Frames: 196 -> 201

 Number of reflections
  Partial:     9
  Full:        363
  In ice ring: 0
  Total:       372


 Frames: 199 -> 204

 Number of reflections
  Partial:     17
  Full:        375
  In ice ring: 0
  Total:       392


 Frames: 202 -> 207

 Number of reflections
  Partial:     20
  Full:        350
  In ice ring: 0
  Total:       370


 Frames: 205 -> 210

 Number of reflections
  Partial:     11
  Full:        369
  In ice ring: 0
  Total:       380


 Frames: 208 -> 213

 Number of reflections
  Partial:     12
  Full:        357
  In ice ring: 0
  Total:       369


 Frames: 211 -> 216

 Number of reflections
  Partial:     14
  Full:        355
  In ice ring: 0
  Total:       369


 Frames: 214 -> 219

 Number of reflections
  Partial:     19
  Full:        336
  In ice ring: 0
  Total:       355


 Frames: 217 -> 222

 Number of reflections
  Partial:     18
  Full:        362
  In ice ring: 0
  Total:       380


 Frames: 220 -> 225

 Number of reflections
  Partial:     17
  Full:        356
  In ice ring: 0
  Total:       373


 Frames: 223 -> 228

 Number of reflections
  Partial:     13
  Full:        356
  In ice ring: 0
  Total:       369


 Frames: 226 -> 231

 Number of reflections
  Partial:     8
  Full:        357
  In ice ring: 0
  Total:       365


 Frames: 229 -> 234

 Number of reflections
  Partial:     10
  Full:        359
  In ice ring: 0
  Total:       369


 Frames: 232 -> 237

 Number of reflections
  Partial:     6
  Full:        327
  In ice ring: 0
  Total:       333


 Frames: 235 -> 240

 Number of reflections
  Partial:     7
  Full:        350
  In ice ring: 0
  Total:       357


 Frames: 238 -> 243

 Number of reflections
  Partial:     14
  Full:        376
  In ice ring: 0
  Total:       390


 Frames: 241 -> 246

 Number of reflections
  Partial:     18
  Full:        365
  In ice ring: 0
  Total:       383


 Frames: 244 -> 249

 Number of reflections
  Partial:     19
  Full:        351
  In ice ring: 0
  Total:       370


 Frames: 247 -> 252

 Number of reflections
  Partial:     8
  Full:        382
  In ice ring: 0
  Total:       390


 Frames: 250 -> 255

 Number of reflections
  Partial:     9
  Full:        362
  In ice ring: 0
  Total:       371


 Frames: 253 -> 258

 Number of reflections
  Partial:     8
  Full:        347
  In ice ring: 0
  Total:       355


 Frames: 256 -> 261

 Number of reflections
  Partial:     13
  Full:        371
  In ice ring: 0
  Total:       384


 Frames: 259 -> 264

 Number of reflections
  Partial:     11
  Full:        362
  In ice ring: 0
  Total:       373


 Frames: 262 -> 267

 Number of reflections
  Partial:     7
  Full:        348
  In ice ring: 0
  Total:       355


 Frames: 265 -> 270

 Number of reflections
  Partial:     14
  Full:        419
  In ice ring: 0
  Total:       433


 Frames: 268 -> 273

 Number of reflections
  Partial:     12
  Full:        394
  In ice ring: 0
  Total:       406


 Frames: 271 -> 276

 Number of reflections
  Partial:     8
  Full:        383
  In ice ring: 0
  Total:       391


 Frames: 274 -> 279

 Number of reflections
  Partial:     4
  Full:        358
  In ice ring: 0
  Total:       362


 Frames: 277 -> 282

 Number of reflections
  Partial:     7
  Full:        397
  In ice ring: 0
  Total:       404


 Frames: 280 -> 285

 Number of reflections
  Partial:     10
  Full:        378
  In ice ring: 0
  Total:       388


 Frames: 283 -> 288

 Number of reflections
  Partial:     8
  Full:        380
  In ice ring: 0
  Total:       388


 Frames: 286 -> 291

 Number of reflections
  Partial:     11
  Full:        367
  In ice ring: 0
  Total:       378


 Frames: 289 -> 294

 Number of reflections
  Partial:     11
  Full:        387
  In ice ring: 0
  Total:       398


 Frames: 292 -> 297

 Number of reflections
  Partial:     9
  Full:        366
  In ice ring: 0
  Total:       375


 Frames: 295 -> 300

 Number of reflections
  Partial:     7
  Full:        387
  In ice ring: 0
  Total:       394


 Frames: 298 -> 303

 Number of reflections
  Partial:     12
  Full:        392
  In ice ring: 0
  Total:       404


 Frames: 301 -> 306

 Number of reflections
  Partial:     11
  Full:        355
  In ice ring: 0
  Total:       366


 Frames: 304 -> 309

 Number of reflections
  Partial:     10
  Full:        378
  In ice ring: 0
  Total:       388


 Frames: 307 -> 312

 Number of reflections
  Partial:     9
  Full:        399
  In ice ring: 0
  Total:       408


 Frames: 310 -> 315

 Number of reflections
  Partial:     10
  Full:        388
  In ice ring: 0
  Total:       398


 Frames: 313 -> 318

 Number of reflections
  Partial:     7
  Full:        369
  In ice ring: 0
  Total:       376


 Frames: 316 -> 321

 Number of reflections
  Partial:     3
  Full:        401
  In ice ring: 0
  Total:       404


 Frames: 319 -> 324

 Number of reflections
  Partial:     5
  Full:        368
  In ice ring: 0
  Total:       373


 Frames: 322 -> 327

 Number of reflections
  Partial:     8
  Full:        409
  In ice ring: 0
  Total:       417


 Frames: 325 -> 330

 Number of reflections
  Partial:     9
  Full:        376
  In ice ring: 0
  Total:       385


 Frames: 328 -> 333

 Number of reflections
  Partial:     8
  Full:        399
  In ice ring: 0
  Total:       407


 Frames: 331 -> 336

 Number of reflections
  Partial:     7
  Full:        387
  In ice ring: 0
  Total:       394


 Frames: 334 -> 339

 Number of reflections
  Partial:     5
  Full:        371
  In ice ring: 0
  Total:       376


 Frames: 337 -> 342

 Number of reflections
  Partial:     11
  Full:        421
  In ice ring: 0
  Total:       432


 Frames: 340 -> 345

 Number of reflections
  Partial:     12
  Full:        385
  In ice ring: 0
  Total:       397


 Frames: 343 -> 348

 Number of reflections
  Partial:     7
  Full:        368
  In ice ring: 0
  Total:       375


 Frames: 346 -> 351

 Number of reflections
  Partial:     8
  Full:        411
  In ice ring: 0
  Total:       419


 Frames: 349 -> 354

 Number of reflections
  Partial:     11
  Full:        395
  In ice ring: 0
  Total:       406


 Frames: 352 -> 357

 Number of reflections
  Partial:     10
  Full:        409
  In ice ring: 0
  Total:       419


 Frames: 355 -> 360

 Number of reflections
  Partial:     15
  Full:        398
  In ice ring: 0
  Total:       413


 Frames: 358 -> 363

 Number of reflections
  Partial:     14
  Full:        431
  In ice ring: 0
  Total:       445


 Frames: 361 -> 366

 Number of reflections
  Partial:     8
  Full:        388
  In ice ring: 0
  Total:       396


 Frames: 364 -> 369

 Number of reflections
  Partial:     8
  Full:        425
  In ice ring: 0
  Total:       433


 Frames: 367 -> 372

 Number of reflections
  Partial:     11
  Full:        409
  In ice ring: 0
  Total:       420


 Frames: 370 -> 375

 Number of reflections
  Partial:     10
  Full:        396
  In ice ring: 0
  Total:       406


 Frames: 373 -> 378

 Number of reflections
  Partial:     12
  Full:        407
  In ice ring: 0
  Total:       419


 Frames: 376 -> 381

 Number of reflections
  Partial:     7
  Full:        386
  In ice ring: 0
  Total:       393


 Frames: 379 -> 384

 Number of reflections
  Partial:     14
  Full:        405
  In ice ring: 0
  Total:       419


 Frames: 382 -> 387

 Number of reflections
  Partial:     16
  Full:        397
  In ice ring: 0
  Total:       413


 Frames: 385 -> 390

 Number of reflections
  Partial:     15
  Full:        414
  In ice ring: 0
  Total:       429


 Frames: 388 -> 393

 Number of reflections
  Partial:     13
  Full:        415
  In ice ring: 0
  Total:       428


 Frames: 391 -> 396

 Number of reflections
  Partial:     10
  Full:        424
  In ice ring: 0
  Total:       434


 Frames: 394 -> 399

 Number of reflections
  Partial:     14
  Full:        376
  In ice ring: 0
  Total:       390


 Frames: 397 -> 402

 Number of reflections
  Partial:     6
  Full:        426
  In ice ring: 0
  Total:       432


 Frames: 400 -> 405

 Number of reflections
  Partial:     13
  Full:        419
  In ice ring: 0
  Total:       432


 Frames: 403 -> 408

 Number of reflections
  Partial:     13
  Full:        406
  In ice ring: 0
  Total:       419


 Frames: 406 -> 411

 Number of reflections
  Partial:     14
  Full:        406
  In ice ring: 0
  Total:       420


 Frames: 409 -> 414

 Number of reflections
  Partial:     15
  Full:        409
  In ice ring: 0
  Total:       424


 Frames: 412 -> 417

 Number of reflections
  Partial:     18
  Full:        408
  In ice ring: 0
  Total:       426


 Frames: 415 -> 420

 Number of reflections
  Partial:     10
  Full:        412
  In ice ring: 0
  Total:       422


 Frames: 418 -> 423

 Number of reflections
  Partial:     10
  Full:        415
  In ice ring: 0
  Total:       425


 Frames: 421 -> 426

 Number of reflections
  Partial:     14
  Full:        385
  In ice ring: 0
  Total:       399


 Frames: 424 -> 429

 Number of reflections
  Partial:     7
  Full:        428
  In ice ring: 0
  Total:       435


 Frames: 427 -> 432

 Number of reflections
  Partial:     1
  Full:        441
  In ice ring: 0
  Total:       442


 Frames: 430 -> 435

 Number of reflections
  Partial:     9
  Full:        395
  In ice ring: 0
  Total:       404


 Frames: 433 -> 438

 Number of reflections
  Partial:     7
  Full:        403
  In ice ring: 0
  Total:       410


 Frames: 436 -> 441

 Number of reflections
  Partial:     12
  Full:        404
  In ice ring: 0
  Total:       416


 Frames: 439 -> 444

 Number of reflections
  Partial:     7
  Full:        384
  In ice ring: 0
  Total:       391


 Frames: 442 -> 447

 Number of reflections
  Partial:     5
  Full:        425
  In ice ring: 0
  Total:       430


 Frames: 445 -> 450

 Number of reflections
  Partial:     8
  Full:        397
  In ice ring: 0
  Total:       405


 Frames: 448 -> 453

 Number of reflections
  Partial:     12
  Full:        423
  In ice ring: 0
  Total:       435


 Frames: 451 -> 456

 Number of reflections
  Partial:     15
  Full:        393
  In ice ring: 0
  Total:       408


 Frames: 454 -> 459

 Number of reflections
  Partial:     11
  Full:        407
  In ice ring: 0
  Total:       418


 Frames: 457 -> 462

 Number of reflections
  Partial:     8
  Full:        379
  In ice ring: 0
  Total:       387


 Frames: 460 -> 465

 Number of reflections
  Partial:     10
  Full:        424
  In ice ring: 0
  Total:       434


 Frames: 463 -> 468

 Number of reflections
  Partial:     15
  Full:        427
  In ice ring: 0
  Total:       442


 Frames: 466 -> 471

 Number of reflections
  Partial:     13
  Full:        419
  In ice ring: 0
  Total:       432


 Frames: 469 -> 474

 Number of reflections
  Partial:     12
  Full:        423
  In ice ring: 0
  Total:       435


 Frames: 472 -> 477

 Number of reflections
  Partial:     15
  Full:        390
  In ice ring: 0
  Total:       405


 Frames: 475 -> 480

 Number of reflections
  Partial:     17
  Full:        446
  In ice ring: 0
  Total:       463


 Frames: 478 -> 483

 Number of reflections
  Partial:     16
  Full:        365
  In ice ring: 0
  Total:       381


 Frames: 481 -> 486

 Number of reflections
  Partial:     17
  Full:        380
  In ice ring: 0
  Total:       397


 Frames: 484 -> 489

 Number of reflections
  Partial:     13
  Full:        409
  In ice ring: 0
  Total:       422


 Frames: 487 -> 492

 Number of reflections
  Partial:     11
  Full:        389
  In ice ring: 0
  Total:       400


 Frames: 490 -> 495

 Number of reflections
  Partial:     14
  Full:        387
  In ice ring: 0
  Total:       401


 Frames: 493 -> 498

 Number of reflections
  Partial:     14
  Full:        372
  In ice ring: 0
  Total:       386


 Frames: 496 -> 501

 Number of reflections
  Partial:     12
  Full:        381
  In ice ring: 0
  Total:       393


 Frames: 499 -> 504

 Number of reflections
  Partial:     10
  Full:        361
  In ice ring: 0
  Total:       371


 Frames: 502 -> 507

 Number of reflections
  Partial:     13
  Full:        370
  In ice ring: 0
  Total:       383


 Frames: 505 -> 510

 Number of reflections
  Partial:     18
  Full:        382
  In ice ring: 0
  Total:       400


 Frames: 508 -> 513

 Number of reflections
  Partial:     22
  Full:        382
  In ice ring: 0
  Total:       404


 Frames: 511 -> 516

 Number of reflections
  Partial:     20
  Full:        358
  In ice ring: 0
  Total:       378


 Frames: 514 -> 519

 Number of reflections
  Partial:     14
  Full:        384
  In ice ring: 0
  Total:       398


 Frames: 517 -> 522

 Number of reflections
  Partial:     6
  Full:        384
  In ice ring: 0
  Total:       390


 Frames: 520 -> 525

 Number of reflections
  Partial:     5
  Full:        346
  In ice ring: 0
  Total:       351


 Frames: 523 -> 528

 Number of reflections
  Partial:     12
  Full:        376
  In ice ring: 0
  Total:       388


 Frames: 526 -> 531

 Number of reflections
  Partial:     23
  Full:        343
  In ice ring: 0
  Total:       366


 Frames: 529 -> 534

 Number of reflections
  Partial:     17
  Full:        380
  In ice ring: 0
  Total:       397


 Frames: 532 -> 537

 Number of reflections
  Partial:     13
  Full:        356
  In ice ring: 0
  Total:       369


 Frames: 535 -> 540

 Number of reflections
  Partial:     8
  Full:        338
  In ice ring: 0
  Total:       346


 Frames: 538 -> 543

 Number of reflections
  Partial:     17
  Full:        367
  In ice ring: 0
  Total:       384


 Frames: 541 -> 546

 Number of reflections
  Partial:     13
  Full:        336
  In ice ring: 0
  Total:       349


 Frames: 544 -> 549

 Number of reflections
  Partial:     11
  Full:        353
  In ice ring: 0
  Total:       364


 Frames: 547 -> 552

 Number of reflections
  Partial:     17
  Full:        357
  In ice ring: 0
  Total:       374


 Frames: 550 -> 555

 Number of reflections
  Partial:     14
  Full:        339
  In ice ring: 0
  Total:       353


 Frames: 553 -> 558

 Number of reflections
  Partial:     6
  Full:        378
  In ice ring: 0
  Total:       384


 Frames: 556 -> 561

 Number of reflections
  Partial:     7
  Full:        340
  In ice ring: 0
  Total:       347


 Frames: 559 -> 564

 Number of reflections
  Partial:     14
  Full:        361
  In ice ring: 0
  Total:       375


 Frames: 562 -> 567

 Number of reflections
  Partial:     9
  Full:        325
  In ice ring: 0
  Total:       334


 Frames: 565 -> 570

 Number of reflections
  Partial:     6
  Full:        340
  In ice ring: 0
  Total:       346


 Frames: 568 -> 573

 Number of reflections
  Partial:     8
  Full:        340
  In ice ring: 0
  Total:       348


 Frames: 571 -> 576

 Number of reflections
  Partial:     12
  Full:        335
  In ice ring: 0
  Total:       347


 Frames: 574 -> 579

 Number of reflections
  Partial:     19
  Full:        338
  In ice ring: 0
  Total:       357


 Frames: 577 -> 582

 Number of reflections
  Partial:     20
  Full:        348
  In ice ring: 0
  Total:       368


 Frames: 580 -> 585

 Number of reflections
  Partial:     14
  Full:        354
  In ice ring: 0
  Total:       368


 Frames: 583 -> 588

 Number of reflections
  Partial:     14
  Full:        349
  In ice ring: 0
  Total:       363


 Frames: 586 -> 591

 Number of reflections
  Partial:     10
  Full:        357
  In ice ring: 0
  Total:       367


 Frames: 589 -> 594

 Number of reflections
  Partial:     6
  Full:        369
  In ice ring: 0
  Total:       375


 Frames: 592 -> 597

 Number of reflections
  Partial:     6
  Full:        336
  In ice ring: 0
  Total:       342


 Frames: 595 -> 600

 Number of reflections
  Partial:     11
  Full:        358
  In ice ring: 0
  Total:       369


 Frames: 598 -> 603

 Number of reflections
  Partial:     8
  Full:        375
  In ice ring: 0
  Total:       383


 Frames: 601 -> 606

 Number of reflections
  Partial:     13
  Full:        376
  In ice ring: 0
  Total:       389


 Frames: 604 -> 609

 Number of reflections
  Partial:     8
  Full:        352
  In ice ring: 0
  Total:       360


 Frames: 607 -> 612

 Number of reflections
  Partial:     5
  Full:        386
  In ice ring: 0
  Total:       391


 Frames: 610 -> 615

 Number of reflections
  Partial:     4
  Full:        368
  In ice ring: 0
  Total:       372


 Frames: 613 -> 618

 Number of reflections
  Partial:     13
  Full:        378
  In ice ring: 0
  Total:       391


 Frames: 616 -> 621

 Number of reflections
  Partial:     7
  Full:        392
  In ice ring: 0
  Total:       399


 Frames: 619 -> 624

 Number of reflections
  Partial:     5
  Full:        360
  In ice ring: 0
  Total:       365


 Frames: 622 -> 627

 Number of reflections
  Partial:     7
  Full:        347
  In ice ring: 0
  Total:       354


 Frames: 625 -> 630

 Number of reflections
  Partial:     12
  Full:        418
  In ice ring: 0
  Total:       430


 Frames: 628 -> 633

 Number of reflections
  Partial:     13
  Full:        366
  In ice ring: 0
  Total:       379


 Frames: 631 -> 636

 Number of reflections
  Partial:     12
  Full:        341
  In ice ring: 0
  Total:       353


 Frames: 634 -> 639

 Number of reflections
  Partial:     11
  Full:        327
  In ice ring: 0
  Total:       338


 Frames: 637 -> 642

 Number of reflections
  Partial:     4
  Full:        365
  In ice ring: 0
  Total:       369


 Frames: 640 -> 645

 Number of reflections
  Partial:     9
  Full:        328
  In ice ring: 0
  Total:       337


 Frames: 643 -> 648

 Number of reflections
  Partial:     8
  Full:        353
  In ice ring: 0
  Total:       361


 Frames: 646 -> 651

 Number of reflections
  Partial:     13
  Full:        343
  In ice ring: 0
  Total:       356


 Frames: 649 -> 654

 Number of reflections
  Partial:     13
  Full:        386
  In ice ring: 0
  Total:       399


 Frames: 652 -> 657

 Number of reflections
  Partial:     9
  Full:        365
  In ice ring: 0
  Total:       374


 Frames: 655 -> 660

 Number of reflections
  Partial:     6
  Full:        384
  In ice ring: 0
  Total:       390


 Frames: 658 -> 663

 Number of reflections
  Partial:     14
  Full:        403
  In ice ring: 0
  Total:       417


 Frames: 661 -> 666

 Number of reflections
  Partial:     20
  Full:        371
  In ice ring: 0
  Total:       391


 Frames: 664 -> 669

 Number of reflections
  Partial:     14
  Full:        387
  In ice ring: 0
  Total:       401


 Frames: 667 -> 672

 Number of reflections
  Partial:     8
  Full:        394
  In ice ring: 0
  Total:       402


 Frames: 670 -> 675

 Number of reflections
  Partial:     13
  Full:        389
  In ice ring: 0
  Total:       402


 Frames: 673 -> 678

 Number of reflections
  Partial:     11
  Full:        375
  In ice ring: 0
  Total:       386


 Frames: 676 -> 681

 Number of reflections
  Partial:     11
  Full:        396
  In ice ring: 0
  Total:       407


 Frames: 679 -> 684

 Number of reflections
  Partial:     12
  Full:        378
  In ice ring: 0
  Total:       390


 Frames: 682 -> 687

 Number of reflections
  Partial:     15
  Full:        404
  In ice ring: 0
  Total:       419


 Frames: 685 -> 690

 Number of reflections
  Partial:     13
  Full:        364
  In ice ring: 0
  Total:       377


 Frames: 688 -> 693

 Number of reflections
  Partial:     11
  Full:        406
  In ice ring: 0
  Total:       417


 Frames: 691 -> 696

 Number of reflections
  Partial:     8
  Full:        392
  In ice ring: 0
  Total:       400


 Frames: 694 -> 699

 Number of reflections
  Partial:     3
  Full:        395
  In ice ring: 0
  Total:       398


 Frames: 697 -> 702

 Number of reflections
  Partial:     5
  Full:        422
  In ice ring: 0
  Total:       427


 Frames: 700 -> 705

 Number of reflections
  Partial:     13
  Full:        411
  In ice ring: 0
  Total:       424


 Frames: 703 -> 708

 Number of reflections
  Partial:     17
  Full:        386
  In ice ring: 0
  Total:       403


 Frames: 706 -> 711

 Number of reflections
  Partial:     16
  Full:        431
  In ice ring: 0
  Total:       447


 Frames: 709 -> 714

 Number of reflections
  Partial:     11
  Full:        419
  In ice ring: 0
  Total:       430


 Frames: 712 -> 717

 Number of reflections
  Partial:     9
  Full:        452
  In ice ring: 0
  Total:       461


 Frames: 715 -> 720

 Number of reflections
  Partial:     73
  Full:        575
  In ice ring: 0
  Total:       648


 Summary of profile model
+------+-----------+-----------+----------+----------+----------+-----------------+
|   ID |   Profile | Created   |   X (px) |   Y (px) |   Z (im) |   # reflections |
|------+-----------+-----------+----------+----------+----------+-----------------|
|    0 |         0 | True      |    410.5 |   421.17 |        5 |            1675 |
|    0 |         1 | True      |   1231.5 |   421.17 |        5 |            1990 |
|    0 |         2 | True      |   2052.5 |   421.17 |        5 |            1799 |
|    0 |         3 | True      |    410.5 |  1263.5  |        5 |            2327 |
|    0 |         4 | True      |   1231.5 |  1263.5  |        5 |            2797 |
|    0 |         5 | True      |   2052.5 |  1263.5  |        5 |            2561 |
|    0 |         6 | True      |    410.5 |  2105.83 |        5 |            1742 |
|    0 |         7 | True      |   1231.5 |  2105.83 |        5 |            2150 |
|    0 |         8 | True      |   2052.5 |  2105.83 |        5 |            1957 |
|    0 |         9 | True      |    410.5 |   421.17 |       15 |            2537 |
|    0 |        10 | True      |   1231.5 |   421.17 |       15 |            3023 |
|    0 |        11 | True      |   2052.5 |   421.17 |       15 |            2720 |
|    0 |        12 | True      |    410.5 |  1263.5  |       15 |            3523 |
|    0 |        13 | True      |   1231.5 |  1263.5  |       15 |            4237 |
|    0 |        14 | True      |   2052.5 |  1263.5  |       15 |            3856 |
|    0 |        15 | True      |    410.5 |  2105.83 |       15 |            2631 |
|    0 |        16 | True      |   1231.5 |  2105.83 |       15 |            3245 |
|    0 |        17 | True      |   2052.5 |  2105.83 |       15 |            2940 |
|    0 |        18 | True      |    410.5 |   421.17 |       25 |            2611 |
|    0 |        19 | True      |   1231.5 |   421.17 |       25 |            3110 |
|    0 |        20 | True      |   2052.5 |   421.17 |       25 |            2775 |
|    0 |        21 | True      |    410.5 |  1263.5  |       25 |            3579 |
|    0 |        22 | True      |   1231.5 |  1263.5  |       25 |            4280 |
|    0 |        23 | True      |   2052.5 |  1263.5  |       25 |            3868 |
|    0 |        24 | True      |    410.5 |  2105.83 |       25 |            2590 |
|    0 |        25 | True      |   1231.5 |  2105.83 |       25 |            3172 |
|    0 |        26 | True      |   2052.5 |  2105.83 |       25 |            2861 |
|    0 |        27 | True      |    410.5 |   421.17 |       35 |            2668 |
|    0 |        28 | True      |   1231.5 |   421.17 |       35 |            3178 |
|    0 |        29 | True      |   2052.5 |   421.17 |       35 |            2830 |
|    0 |        30 | True      |    410.5 |  1263.5  |       35 |            3621 |
|    0 |        31 | True      |   1231.5 |  1263.5  |       35 |            4312 |
|    0 |        32 | True      |   2052.5 |  1263.5  |       35 |            3887 |
|    0 |        33 | True      |    410.5 |  2105.83 |       35 |            2538 |
|    0 |        34 | True      |   1231.5 |  2105.83 |       35 |            3099 |
|    0 |        35 | True      |   2052.5 |  2105.83 |       35 |            2794 |
|    0 |        36 | True      |    410.5 |   421.17 |       45 |            2734 |
|    0 |        37 | True      |   1231.5 |   421.17 |       45 |            3242 |
|    0 |        38 | True      |   2052.5 |   421.17 |       45 |            2885 |
|    0 |        39 | True      |    410.5 |  1263.5  |       45 |            3612 |
|    0 |        40 | True      |   1231.5 |  1263.5  |       45 |            4268 |
|    0 |        41 | True      |   2052.5 |  1263.5  |       45 |            3859 |
|    0 |        42 | True      |    410.5 |  2105.83 |       45 |            2428 |
|    0 |        43 | True      |   1231.5 |  2105.83 |       45 |            2944 |
|    0 |        44 | True      |   2052.5 |  2105.83 |       45 |            2676 |
|    0 |        45 | True      |    410.5 |   421.17 |       55 |            2798 |
|    0 |        46 | True      |   1231.5 |   421.17 |       55 |            3302 |
|    0 |        47 | True      |   2052.5 |   421.17 |       55 |            2935 |
|    0 |        48 | True      |    410.5 |  1263.5  |       55 |            3608 |
|    0 |        49 | True      |   1231.5 |  1263.5  |       55 |            4239 |
|    0 |        50 | True      |   2052.5 |  1263.5  |       55 |            3826 |
|    0 |        51 | True      |    410.5 |  2105.83 |       55 |            2358 |
|    0 |        52 | True      |   1231.5 |  2105.83 |       55 |            2840 |
|    0 |        53 | True      |   2052.5 |  2105.83 |       55 |            2584 |
|    0 |        54 | True      |    410.5 |   421.17 |       65 |            2856 |
|    0 |        55 | True      |   1231.5 |   421.17 |       65 |            3375 |
|    0 |        56 | True      |   2052.5 |   421.17 |       65 |            2975 |
|    0 |        57 | True      |    410.5 |  1263.5  |       65 |            3608 |
|    0 |        58 | True      |   1231.5 |  1263.5  |       65 |            4235 |
|    0 |        59 | True      |   2052.5 |  1263.5  |       65 |            3800 |
|    0 |        60 | True      |    410.5 |  2105.83 |       65 |            2281 |
|    0 |        61 | True      |   1231.5 |  2105.83 |       65 |            2732 |
|    0 |        62 | True      |   2052.5 |  2105.83 |       65 |            2485 |
|    0 |        63 | True      |    410.5 |   421.17 |       75 |            2961 |
|    0 |        64 | True      |   1231.5 |   421.17 |       75 |            3501 |
|    0 |        65 | True      |   2052.5 |   421.17 |       75 |            3056 |
|    0 |        66 | True      |    410.5 |  1263.5  |       75 |            3651 |
|    0 |        67 | True      |   1231.5 |  1263.5  |       75 |            4292 |
|    0 |        68 | True      |   2052.5 |  1263.5  |       75 |            3814 |
|    0 |        69 | True      |    410.5 |  2105.83 |       75 |            2221 |
|    0 |        70 | True      |   1231.5 |  2105.83 |       75 |            2667 |
|    0 |        71 | True      |   2052.5 |  2105.83 |       75 |            2410 |
|    0 |        72 | True      |    410.5 |   421.17 |       85 |            3007 |
|    0 |        73 | True      |   1231.5 |   421.17 |       85 |            3582 |
|    0 |        74 | True      |   2052.5 |   421.17 |       85 |            3116 |
|    0 |        75 | True      |    410.5 |  1263.5  |       85 |            3661 |
|    0 |        76 | True      |   1231.5 |  1263.5  |       85 |            4335 |
|    0 |        77 | True      |   2052.5 |  1263.5  |       85 |            3844 |
|    0 |        78 | True      |    410.5 |  2105.83 |       85 |            2152 |
|    0 |        79 | True      |   1231.5 |  2105.83 |       85 |            2615 |
|    0 |        80 | True      |   2052.5 |  2105.83 |       85 |            2385 |
|    0 |        81 | True      |    410.5 |   421.17 |       95 |            3123 |
|    0 |        82 | True      |   1231.5 |   421.17 |       95 |            3714 |
|    0 |        83 | True      |   2052.5 |   421.17 |       95 |            3207 |
|    0 |        84 | True      |    410.5 |  1263.5  |       95 |            3727 |
|    0 |        85 | True      |   1231.5 |  1263.5  |       95 |            4412 |
|    0 |        86 | True      |   2052.5 |  1263.5  |       95 |            3886 |
|    0 |        87 | True      |    410.5 |  2105.83 |       95 |            2144 |
|    0 |        88 | True      |   1231.5 |  2105.83 |       95 |            2612 |
|    0 |        89 | True      |   2052.5 |  2105.83 |       95 |            2377 |
|    0 |        90 | True      |    410.5 |   421.17 |      105 |            3158 |
|    0 |        91 | True      |   1231.5 |   421.17 |      105 |            3751 |
|    0 |        92 | True      |   2052.5 |   421.17 |      105 |            3255 |
|    0 |        93 | True      |    410.5 |  1263.5  |      105 |            3737 |
|    0 |        94 | True      |   1231.5 |  1263.5  |      105 |            4419 |
|    0 |        95 | True      |   2052.5 |  1263.5  |      105 |            3903 |
|    0 |        96 | True      |    410.5 |  2105.83 |      105 |            2116 |
|    0 |        97 | True      |   1231.5 |  2105.83 |      105 |            2571 |
|    0 |        98 | True      |   2052.5 |  2105.83 |      105 |            2356 |
|    0 |        99 | True      |    410.5 |   421.17 |      115 |            3265 |
|    0 |       100 | True      |   1231.5 |   421.17 |      115 |            3859 |
|    0 |       101 | True      |   2052.5 |   421.17 |      115 |            3324 |
|    0 |       102 | True      |    410.5 |  1263.5  |      115 |            3794 |
|    0 |       103 | True      |   1231.5 |  1263.5  |      115 |            4463 |
|    0 |       104 | True      |   2052.5 |  1263.5  |      115 |            3905 |
|    0 |       105 | True      |    410.5 |  2105.83 |      115 |            2136 |
|    0 |       106 | True      |   1231.5 |  2105.83 |      115 |            2573 |
|    0 |       107 | True      |   2052.5 |  2105.83 |      115 |            2329 |
|    0 |       108 | True      |    410.5 |   421.17 |      125 |            3223 |
|    0 |       109 | True      |   1231.5 |   421.17 |      125 |            3796 |
|    0 |       110 | True      |   2052.5 |   421.17 |      125 |            3243 |
|    0 |       111 | True      |    410.5 |  1263.5  |      125 |            3707 |
|    0 |       112 | True      |   1231.5 |  1263.5  |      125 |            4350 |
|    0 |       113 | True      |   2052.5 |  1263.5  |      125 |            3772 |
|    0 |       114 | True      |    410.5 |  2105.83 |      125 |            2118 |
|    0 |       115 | True      |   1231.5 |  2105.83 |      125 |            2540 |
|    0 |       116 | True      |   2052.5 |  2105.83 |      125 |            2287 |
|    0 |       117 | True      |    410.5 |   421.17 |      135 |            3195 |
|    0 |       118 | True      |   1231.5 |   421.17 |      135 |            3745 |
|    0 |       119 | True      |   2052.5 |   421.17 |      135 |            3180 |
|    0 |       120 | True      |    410.5 |  1263.5  |      135 |            3645 |
|    0 |       121 | True      |   1231.5 |  1263.5  |      135 |            4260 |
|    0 |       122 | True      |   2052.5 |  1263.5  |      135 |            3669 |
|    0 |       123 | True      |    410.5 |  2105.83 |      135 |            2120 |
|    0 |       124 | True      |   1231.5 |  2105.83 |      135 |            2534 |
|    0 |       125 | True      |   2052.5 |  2105.83 |      135 |            2262 |
|    0 |       126 | True      |    410.5 |   421.17 |      145 |            3093 |
|    0 |       127 | True      |   1231.5 |   421.17 |      145 |            3623 |
|    0 |       128 | True      |   2052.5 |   421.17 |      145 |            3088 |
|    0 |       129 | True      |    410.5 |  1263.5  |      145 |            3536 |
|    0 |       130 | True      |   1231.5 |  1263.5  |      145 |            4130 |
|    0 |       131 | True      |   2052.5 |  1263.5  |      145 |            3570 |
|    0 |       132 | True      |    410.5 |  2105.83 |      145 |            2124 |
|    0 |       133 | True      |   1231.5 |  2105.83 |      145 |            2534 |
|    0 |       134 | True      |   2052.5 |  2105.83 |      145 |            2268 |
|    0 |       135 | True      |    410.5 |   421.17 |      155 |            3033 |
|    0 |       136 | True      |   1231.5 |   421.17 |      155 |            3548 |
|    0 |       137 | True      |   2052.5 |   421.17 |      155 |            3042 |
|    0 |       138 | True      |    410.5 |  1263.5  |      155 |            3479 |
|    0 |       139 | True      |   1231.5 |  1263.5  |      155 |            4057 |
|    0 |       140 | True      |   2052.5 |  1263.5  |      155 |            3530 |
|    0 |       141 | True      |    410.5 |  2105.83 |      155 |            2131 |
|    0 |       142 | True      |   1231.5 |  2105.83 |      155 |            2550 |
|    0 |       143 | True      |   2052.5 |  2105.83 |      155 |            2281 |
|    0 |       144 | True      |    410.5 |   421.17 |      165 |            3011 |
|    0 |       145 | True      |   1231.5 |   421.17 |      165 |            3518 |
|    0 |       146 | True      |   2052.5 |   421.17 |      165 |            2998 |
|    0 |       147 | True      |    410.5 |  1263.5  |      165 |            3466 |
|    0 |       148 | True      |   1231.5 |  1263.5  |      165 |            4033 |
|    0 |       149 | True      |   2052.5 |  1263.5  |      165 |            3494 |
|    0 |       150 | True      |    410.5 |  2105.83 |      165 |            2179 |
|    0 |       151 | True      |   1231.5 |  2105.83 |      165 |            2604 |
|    0 |       152 | True      |   2052.5 |  2105.83 |      165 |            2312 |
|    0 |       153 | True      |    410.5 |   421.17 |      175 |            2935 |
|    0 |       154 | True      |   1231.5 |   421.17 |      175 |            3433 |
|    0 |       155 | True      |   2052.5 |   421.17 |      175 |            2916 |
|    0 |       156 | True      |    410.5 |  1263.5  |      175 |            3379 |
|    0 |       157 | True      |   1231.5 |  1263.5  |      175 |            3930 |
|    0 |       158 | True      |   2052.5 |  1263.5  |      175 |            3401 |
|    0 |       159 | True      |    410.5 |  2105.83 |      175 |            2172 |
|    0 |       160 | True      |   1231.5 |  2105.83 |      175 |            2594 |
|    0 |       161 | True      |   2052.5 |  2105.83 |      175 |            2297 |
|    0 |       162 | True      |    410.5 |   421.17 |      185 |            2881 |
|    0 |       163 | True      |   1231.5 |   421.17 |      185 |            3367 |
|    0 |       164 | True      |   2052.5 |   421.17 |      185 |            2868 |
|    0 |       165 | True      |    410.5 |  1263.5  |      185 |            3307 |
|    0 |       166 | True      |   1231.5 |  1263.5  |      185 |            3842 |
|    0 |       167 | True      |   2052.5 |  1263.5  |      185 |            3332 |
|    0 |       168 | True      |    410.5 |  2105.83 |      185 |            2192 |
|    0 |       169 | True      |   1231.5 |  2105.83 |      185 |            2606 |
|    0 |       170 | True      |   2052.5 |  2105.83 |      185 |            2307 |
|    0 |       171 | True      |    410.5 |   421.17 |      195 |            2773 |
|    0 |       172 | True      |   1231.5 |   421.17 |      195 |            3250 |
|    0 |       173 | True      |   2052.5 |   421.17 |      195 |            2788 |
|    0 |       174 | True      |    410.5 |  1263.5  |      195 |            3198 |
|    0 |       175 | True      |   1231.5 |  1263.5  |      195 |            3722 |
|    0 |       176 | True      |   2052.5 |  1263.5  |      195 |            3245 |
|    0 |       177 | True      |    410.5 |  2105.83 |      195 |            2211 |
|    0 |       178 | True      |   1231.5 |  2105.83 |      195 |            2622 |
|    0 |       179 | True      |   2052.5 |  2105.83 |      195 |            2324 |
|    0 |       180 | True      |    410.5 |   421.17 |      205 |            2679 |
|    0 |       181 | True      |   1231.5 |   421.17 |      205 |            3137 |
|    0 |       182 | True      |   2052.5 |   421.17 |      205 |            2692 |
|    0 |       183 | True      |    410.5 |  1263.5  |      205 |            3081 |
|    0 |       184 | True      |   1231.5 |  1263.5  |      205 |            3600 |
|    0 |       185 | True      |   2052.5 |  1263.5  |      205 |            3136 |
|    0 |       186 | True      |    410.5 |  2105.83 |      205 |            2187 |
|    0 |       187 | True      |   1231.5 |  2105.83 |      205 |            2613 |
|    0 |       188 | True      |   2052.5 |  2105.83 |      205 |            2302 |
|    0 |       189 | True      |    410.5 |   421.17 |      215 |            2606 |
|    0 |       190 | True      |   1231.5 |   421.17 |      215 |            3047 |
|    0 |       191 | True      |   2052.5 |   421.17 |      215 |            2607 |
|    0 |       192 | True      |    410.5 |  1263.5  |      215 |            3030 |
|    0 |       193 | True      |   1231.5 |  1263.5  |      215 |            3544 |
|    0 |       194 | True      |   2052.5 |  1263.5  |      215 |            3083 |
|    0 |       195 | True      |    410.5 |  2105.83 |      215 |            2204 |
|    0 |       196 | True      |   1231.5 |  2105.83 |      215 |            2626 |
|    0 |       197 | True      |   2052.5 |  2105.83 |      215 |            2305 |
|    0 |       198 | True      |    410.5 |   421.17 |      225 |            2509 |
|    0 |       199 | True      |   1231.5 |   421.17 |      225 |            2948 |
|    0 |       200 | True      |   2052.5 |   421.17 |      225 |            2504 |
|    0 |       201 | True      |    410.5 |  1263.5  |      225 |            2946 |
|    0 |       202 | True      |   1231.5 |  1263.5  |      225 |            3463 |
|    0 |       203 | True      |   2052.5 |  1263.5  |      225 |            2996 |
|    0 |       204 | True      |    410.5 |  2105.83 |      225 |            2178 |
|    0 |       205 | True      |   1231.5 |  2105.83 |      225 |            2604 |
|    0 |       206 | True      |   2052.5 |  2105.83 |      225 |            2276 |
|    0 |       207 | True      |    410.5 |   421.17 |      235 |            2544 |
|    0 |       208 | True      |   1231.5 |   421.17 |      235 |            2970 |
|    0 |       209 | True      |   2052.5 |   421.17 |      235 |            2522 |
|    0 |       210 | True      |    410.5 |  1263.5  |      235 |            3025 |
|    0 |       211 | True      |   1231.5 |  1263.5  |      235 |            3537 |
|    0 |       212 | True      |   2052.5 |  1263.5  |      235 |            3063 |
|    0 |       213 | True      |    410.5 |  2105.83 |      235 |            2260 |
|    0 |       214 | True      |   1231.5 |  2105.83 |      235 |            2682 |
|    0 |       215 | True      |   2052.5 |  2105.83 |      235 |            2347 |
|    0 |       216 | True      |    410.5 |   421.17 |      245 |            2526 |
|    0 |       217 | True      |   1231.5 |   421.17 |      245 |            2956 |
|    0 |       218 | True      |   2052.5 |   421.17 |      245 |            2506 |
|    0 |       219 | True      |    410.5 |  1263.5  |      245 |            3035 |
|    0 |       220 | True      |   1231.5 |  1263.5  |      245 |            3550 |
|    0 |       221 | True      |   2052.5 |  1263.5  |      245 |            3062 |
|    0 |       222 | True      |    410.5 |  2105.83 |      245 |            2286 |
|    0 |       223 | True      |   1231.5 |  2105.83 |      245 |            2714 |
|    0 |       224 | True      |   2052.5 |  2105.83 |      245 |            2364 |
|    0 |       225 | True      |    410.5 |   421.17 |      255 |            2590 |
|    0 |       226 | True      |   1231.5 |   421.17 |      255 |            3019 |
|    0 |       227 | True      |   2052.5 |   421.17 |      255 |            2572 |
|    0 |       228 | True      |    410.5 |  1263.5  |      255 |            3126 |
|    0 |       229 | True      |   1231.5 |  1263.5  |      255 |            3654 |
|    0 |       230 | True      |   2052.5 |  1263.5  |      255 |            3162 |
|    0 |       231 | True      |    410.5 |  2105.83 |      255 |            2345 |
|    0 |       232 | True      |   1231.5 |  2105.83 |      255 |            2797 |
|    0 |       233 | True      |   2052.5 |  2105.83 |      255 |            2434 |
|    0 |       234 | True      |    410.5 |   421.17 |      265 |            2594 |
|    0 |       235 | True      |   1231.5 |   421.17 |      265 |            3010 |
|    0 |       236 | True      |   2052.5 |   421.17 |      265 |            2550 |
|    0 |       237 | True      |    410.5 |  1263.5  |      265 |            3189 |
|    0 |       238 | True      |   1231.5 |  1263.5  |      265 |            3704 |
|    0 |       239 | True      |   2052.5 |  1263.5  |      265 |            3176 |
|    0 |       240 | True      |    410.5 |  2105.83 |      265 |            2422 |
|    0 |       241 | True      |   1231.5 |  2105.83 |      265 |            2869 |
|    0 |       242 | True      |   2052.5 |  2105.83 |      265 |            2453 |
|    0 |       243 | True      |    410.5 |   421.17 |      275 |            2594 |
|    0 |       244 | True      |   1231.5 |   421.17 |      275 |            2992 |
|    0 |       245 | True      |   2052.5 |   421.17 |      275 |            2541 |
|    0 |       246 | True      |    410.5 |  1263.5  |      275 |            3248 |
|    0 |       247 | True      |   1231.5 |  1263.5  |      275 |            3745 |
|    0 |       248 | True      |   2052.5 |  1263.5  |      275 |            3209 |
|    0 |       249 | True      |    410.5 |  2105.83 |      275 |            2474 |
|    0 |       250 | True      |   1231.5 |  2105.83 |      275 |            2920 |
|    0 |       251 | True      |   2052.5 |  2105.83 |      275 |            2476 |
|    0 |       252 | True      |    410.5 |   421.17 |      285 |            2537 |
|    0 |       253 | True      |   1231.5 |   421.17 |      285 |            2915 |
|    0 |       254 | True      |   2052.5 |   421.17 |      285 |            2477 |
|    0 |       255 | True      |    410.5 |  1263.5  |      285 |            3264 |
|    0 |       256 | True      |   1231.5 |  1263.5  |      285 |            3737 |
|    0 |       257 | True      |   2052.5 |  1263.5  |      285 |            3191 |
|    0 |       258 | True      |    410.5 |  2105.83 |      285 |            2532 |
|    0 |       259 | True      |   1231.5 |  2105.83 |      285 |            2958 |
|    0 |       260 | True      |   2052.5 |  2105.83 |      285 |            2488 |
|    0 |       261 | True      |    410.5 |   421.17 |      295 |            2472 |
|    0 |       262 | True      |   1231.5 |   421.17 |      295 |            2866 |
|    0 |       263 | True      |   2052.5 |   421.17 |      295 |            2457 |
|    0 |       264 | True      |    410.5 |  1263.5  |      295 |            3249 |
|    0 |       265 | True      |   1231.5 |  1263.5  |      295 |            3748 |
|    0 |       266 | True      |   2052.5 |  1263.5  |      295 |            3219 |
|    0 |       267 | True      |    410.5 |  2105.83 |      295 |            2537 |
|    0 |       268 | True      |   1231.5 |  2105.83 |      295 |            2985 |
|    0 |       269 | True      |   2052.5 |  2105.83 |      295 |            2526 |
|    0 |       270 | True      |    410.5 |   421.17 |      305 |            2446 |
|    0 |       271 | True      |   1231.5 |   421.17 |      305 |            2845 |
|    0 |       272 | True      |   2052.5 |   421.17 |      305 |            2445 |
|    0 |       273 | True      |    410.5 |  1263.5  |      305 |            3277 |
|    0 |       274 | True      |   1231.5 |  1263.5  |      305 |            3791 |
|    0 |       275 | True      |   2052.5 |  1263.5  |      305 |            3254 |
|    0 |       276 | True      |    410.5 |  2105.83 |      305 |            2600 |
|    0 |       277 | True      |   1231.5 |  2105.83 |      305 |            3062 |
|    0 |       278 | True      |   2052.5 |  2105.83 |      305 |            2594 |
|    0 |       279 | True      |    410.5 |   421.17 |      315 |            2432 |
|    0 |       280 | True      |   1231.5 |   421.17 |      315 |            2844 |
|    0 |       281 | True      |   2052.5 |   421.17 |      315 |            2448 |
|    0 |       282 | True      |    410.5 |  1263.5  |      315 |            3307 |
|    0 |       283 | True      |   1231.5 |  1263.5  |      315 |            3838 |
|    0 |       284 | True      |   2052.5 |  1263.5  |      315 |            3286 |
|    0 |       285 | True      |    410.5 |  2105.83 |      315 |            2642 |
|    0 |       286 | True      |   1231.5 |  2105.83 |      315 |            3110 |
|    0 |       287 | True      |   2052.5 |  2105.83 |      315 |            2622 |
|    0 |       288 | True      |    410.5 |   421.17 |      325 |            2394 |
|    0 |       289 | True      |   1231.5 |   421.17 |      325 |            2805 |
|    0 |       290 | True      |   2052.5 |   421.17 |      325 |            2425 |
|    0 |       291 | True      |    410.5 |  1263.5  |      325 |            3314 |
|    0 |       292 | True      |   1231.5 |  1263.5  |      325 |            3844 |
|    0 |       293 | True      |   2052.5 |  1263.5  |      325 |            3292 |
|    0 |       294 | True      |    410.5 |  2105.83 |      325 |            2667 |
|    0 |       295 | True      |   1231.5 |  2105.83 |      325 |            3129 |
|    0 |       296 | True      |   2052.5 |  2105.83 |      325 |            2632 |
|    0 |       297 | True      |    410.5 |   421.17 |      335 |            2342 |
|    0 |       298 | True      |   1231.5 |   421.17 |      335 |            2769 |
|    0 |       299 | True      |   2052.5 |   421.17 |      335 |            2409 |
|    0 |       300 | True      |    410.5 |  1263.5  |      335 |            3303 |
|    0 |       301 | True      |   1231.5 |  1263.5  |      335 |            3850 |
|    0 |       302 | True      |   2052.5 |  1263.5  |      335 |            3301 |
|    0 |       303 | True      |    410.5 |  2105.83 |      335 |            2662 |
|    0 |       304 | True      |   1231.5 |  2105.83 |      335 |            3128 |
|    0 |       305 | True      |   2052.5 |  2105.83 |      335 |            2623 |
|    0 |       306 | True      |    410.5 |   421.17 |      345 |            2339 |
|    0 |       307 | True      |   1231.5 |   421.17 |      345 |            2788 |
|    0 |       308 | True      |   2052.5 |   421.17 |      345 |            2446 |
|    0 |       309 | True      |    410.5 |  1263.5  |      345 |            3332 |
|    0 |       310 | True      |   1231.5 |  1263.5  |      345 |            3903 |
|    0 |       311 | True      |   2052.5 |  1263.5  |      345 |            3394 |
|    0 |       312 | True      |    410.5 |  2105.83 |      345 |            2682 |
|    0 |       313 | True      |   1231.5 |  2105.83 |      345 |            3164 |
|    0 |       314 | True      |   2052.5 |  2105.83 |      345 |            2695 |
|    0 |       315 | True      |    410.5 |   421.17 |      355 |            2382 |
|    0 |       316 | True      |   1231.5 |   421.17 |      355 |            2848 |
|    0 |       317 | True      |   2052.5 |   421.17 |      355 |            2530 |
|    0 |       318 | True      |    410.5 |  1263.5  |      355 |            3409 |
|    0 |       319 | True      |   1231.5 |  1263.5  |      355 |            3992 |
|    0 |       320 | True      |   2052.5 |  1263.5  |      355 |            3517 |
|    0 |       321 | True      |    410.5 |  2105.83 |      355 |            2703 |
|    0 |       322 | True      |   1231.5 |  2105.83 |      355 |            3189 |
|    0 |       323 | True      |   2052.5 |  2105.83 |      355 |            2751 |
|    0 |       324 | True      |    410.5 |   421.17 |      365 |            2408 |
|    0 |       325 | True      |   1231.5 |   421.17 |      365 |            2899 |
|    0 |       326 | True      |   2052.5 |   421.17 |      365 |            2600 |
|    0 |       327 | True      |    410.5 |  1263.5  |      365 |            3413 |
|    0 |       328 | True      |   1231.5 |  1263.5  |      365 |            4017 |
|    0 |       329 | True      |   2052.5 |  1263.5  |      365 |            3583 |
|    0 |       330 | True      |    410.5 |  2105.83 |      365 |            2656 |
|    0 |       331 | True      |   1231.5 |  2105.83 |      365 |            3148 |
|    0 |       332 | True      |   2052.5 |  2105.83 |      365 |            2749 |
|    0 |       333 | True      |    410.5 |   421.17 |      375 |            2427 |
|    0 |       334 | True      |   1231.5 |   421.17 |      375 |            2919 |
|    0 |       335 | True      |   2052.5 |   421.17 |      375 |            2637 |
|    0 |       336 | True      |    410.5 |  1263.5  |      375 |            3430 |
|    0 |       337 | True      |   1231.5 |  1263.5  |      375 |            4027 |
|    0 |       338 | True      |   2052.5 |  1263.5  |      375 |            3598 |
|    0 |       339 | True      |    410.5 |  2105.83 |      375 |            2616 |
|    0 |       340 | True      |   1231.5 |  2105.83 |      375 |            3089 |
|    0 |       341 | True      |   2052.5 |  2105.83 |      375 |            2702 |
|    0 |       342 | True      |    410.5 |   421.17 |      385 |            2439 |
|    0 |       343 | True      |   1231.5 |   421.17 |      385 |            2946 |
|    0 |       344 | True      |   2052.5 |   421.17 |      385 |            2668 |
|    0 |       345 | True      |    410.5 |  1263.5  |      385 |            3400 |
|    0 |       346 | True      |   1231.5 |  1263.5  |      385 |            4003 |
|    0 |       347 | True      |   2052.5 |  1263.5  |      385 |            3587 |
|    0 |       348 | True      |    410.5 |  2105.83 |      385 |            2524 |
|    0 |       349 | True      |   1231.5 |  2105.83 |      385 |            2990 |
|    0 |       350 | True      |   2052.5 |  2105.83 |      385 |            2625 |
|    0 |       351 | True      |    410.5 |   421.17 |      395 |            2492 |
|    0 |       352 | True      |   1231.5 |   421.17 |      395 |            3012 |
|    0 |       353 | True      |   2052.5 |   421.17 |      395 |            2723 |
|    0 |       354 | True      |    410.5 |  1263.5  |      395 |            3448 |
|    0 |       355 | True      |   1231.5 |  1263.5  |      395 |            4058 |
|    0 |       356 | True      |   2052.5 |  1263.5  |      395 |            3635 |
|    0 |       357 | True      |    410.5 |  2105.83 |      395 |            2500 |
|    0 |       358 | True      |   1231.5 |  2105.83 |      395 |            2957 |
|    0 |       359 | True      |   2052.5 |  2105.83 |      395 |            2599 |
|    0 |       360 | True      |    410.5 |   421.17 |      405 |            2532 |
|    0 |       361 | True      |   1231.5 |   421.17 |      405 |            3068 |
|    0 |       362 | True      |   2052.5 |   421.17 |      405 |            2782 |
|    0 |       363 | True      |    410.5 |  1263.5  |      405 |            3425 |
|    0 |       364 | True      |   1231.5 |  1263.5  |      405 |            4043 |
|    0 |       365 | True      |   2052.5 |  1263.5  |      405 |            3648 |
|    0 |       366 | True      |    410.5 |  2105.83 |      405 |            2398 |
|    0 |       367 | True      |   1231.5 |  2105.83 |      405 |            2846 |
|    0 |       368 | True      |   2052.5 |  2105.83 |      405 |            2518 |
|    0 |       369 | True      |    410.5 |   421.17 |      415 |            2573 |
|    0 |       370 | True      |   1231.5 |   421.17 |      415 |            3143 |
|    0 |       371 | True      |   2052.5 |   421.17 |      415 |            2863 |
|    0 |       372 | True      |    410.5 |  1263.5  |      415 |            3411 |
|    0 |       373 | True      |   1231.5 |  1263.5  |      415 |            4060 |
|    0 |       374 | True      |   2052.5 |  1263.5  |      415 |            3689 |
|    0 |       375 | True      |    410.5 |  2105.83 |      415 |            2336 |
|    0 |       376 | True      |   1231.5 |  2105.83 |      415 |            2778 |
|    0 |       377 | True      |   2052.5 |  2105.83 |      415 |            2489 |
|    0 |       378 | True      |    410.5 |   421.17 |      425 |            2619 |
|    0 |       379 | True      |   1231.5 |   421.17 |      425 |            3213 |
|    0 |       380 | True      |   2052.5 |   421.17 |      425 |            2934 |
|    0 |       381 | True      |    410.5 |  1263.5  |      425 |            3384 |
|    0 |       382 | True      |   1231.5 |  1263.5  |      425 |            4049 |
|    0 |       383 | True      |   2052.5 |  1263.5  |      425 |            3700 |
|    0 |       384 | True      |    410.5 |  2105.83 |      425 |            2251 |
|    0 |       385 | True      |   1231.5 |  2105.83 |      425 |            2676 |
|    0 |       386 | True      |   2052.5 |  2105.83 |      425 |            2425 |
|    0 |       387 | True      |    410.5 |   421.17 |      435 |            2655 |
|    0 |       388 | True      |   1231.5 |   421.17 |      435 |            3285 |
|    0 |       389 | True      |   2052.5 |   421.17 |      435 |            2999 |
|    0 |       390 | True      |    410.5 |  1263.5  |      435 |            3347 |
|    0 |       391 | True      |   1231.5 |  1263.5  |      435 |            4037 |
|    0 |       392 | True      |   2052.5 |  1263.5  |      435 |            3688 |
|    0 |       393 | True      |    410.5 |  2105.83 |      435 |            2175 |
|    0 |       394 | True      |   1231.5 |  2105.83 |      435 |            2584 |
|    0 |       395 | True      |   2052.5 |  2105.83 |      435 |            2343 |
|    0 |       396 | True      |    410.5 |   421.17 |      445 |            2694 |
|    0 |       397 | True      |   1231.5 |   421.17 |      445 |            3333 |
|    0 |       398 | True      |   2052.5 |   421.17 |      445 |            3022 |
|    0 |       399 | True      |    410.5 |  1263.5  |      445 |            3308 |
|    0 |       400 | True      |   1231.5 |  1263.5  |      445 |            3991 |
|    0 |       401 | True      |   2052.5 |  1263.5  |      445 |            3627 |
|    0 |       402 | True      |    410.5 |  2105.83 |      445 |            2096 |
|    0 |       403 | True      |   1231.5 |  2105.83 |      445 |            2477 |
|    0 |       404 | True      |   2052.5 |  2105.83 |      445 |            2231 |
|    0 |       405 | True      |    410.5 |   421.17 |      455 |            2781 |
|    0 |       406 | True      |   1231.5 |   421.17 |      455 |            3447 |
|    0 |       407 | True      |   2052.5 |   421.17 |      455 |            3132 |
|    0 |       408 | True      |    410.5 |  1263.5  |      455 |            3337 |
|    0 |       409 | True      |   1231.5 |  1263.5  |      455 |            4040 |
|    0 |       410 | True      |   2052.5 |  1263.5  |      455 |            3681 |
|    0 |       411 | True      |    410.5 |  2105.83 |      455 |            2062 |
|    0 |       412 | True      |   1231.5 |  2105.83 |      455 |            2433 |
|    0 |       413 | True      |   2052.5 |  2105.83 |      455 |            2201 |
|    0 |       414 | True      |    410.5 |   421.17 |      465 |            2849 |
|    0 |       415 | True      |   1231.5 |   421.17 |      465 |            3511 |
|    0 |       416 | True      |   2052.5 |   421.17 |      465 |            3182 |
|    0 |       417 | True      |    410.5 |  1263.5  |      465 |            3365 |
|    0 |       418 | True      |   1231.5 |  1263.5  |      465 |            4061 |
|    0 |       419 | True      |   2052.5 |  1263.5  |      465 |            3690 |
|    0 |       420 | True      |    410.5 |  2105.83 |      465 |            2024 |
|    0 |       421 | True      |   1231.5 |  2105.83 |      465 |            2389 |
|    0 |       422 | True      |   2052.5 |  2105.83 |      465 |            2163 |
|    0 |       423 | True      |    410.5 |   421.17 |      475 |            2867 |
|    0 |       424 | True      |   1231.5 |   421.17 |      475 |            3544 |
|    0 |       425 | True      |   2052.5 |   421.17 |      475 |            3214 |
|    0 |       426 | True      |    410.5 |  1263.5  |      475 |            3322 |
|    0 |       427 | True      |   1231.5 |  1263.5  |      475 |            4029 |
|    0 |       428 | True      |   2052.5 |  1263.5  |      475 |            3662 |
|    0 |       429 | True      |    410.5 |  2105.83 |      475 |            1977 |
|    0 |       430 | True      |   1231.5 |  2105.83 |      475 |            2344 |
|    0 |       431 | True      |   2052.5 |  2105.83 |      475 |            2128 |
|    0 |       432 | True      |    410.5 |   421.17 |      485 |            2806 |
|    0 |       433 | True      |   1231.5 |   421.17 |      485 |            3473 |
|    0 |       434 | True      |   2052.5 |   421.17 |      485 |            3143 |
|    0 |       435 | True      |    410.5 |  1263.5  |      485 |            3201 |
|    0 |       436 | True      |   1231.5 |  1263.5  |      485 |            3887 |
|    0 |       437 | True      |   2052.5 |  1263.5  |      485 |            3521 |
|    0 |       438 | True      |    410.5 |  2105.83 |      485 |            1921 |
|    0 |       439 | True      |   1231.5 |  2105.83 |      485 |            2274 |
|    0 |       440 | True      |   2052.5 |  2105.83 |      485 |            2058 |
|    0 |       441 | True      |    410.5 |   421.17 |      495 |            2734 |
|    0 |       442 | True      |   1231.5 |   421.17 |      495 |            3407 |
|    0 |       443 | True      |   2052.5 |   421.17 |      495 |            3086 |
|    0 |       444 | True      |    410.5 |  1263.5  |      495 |            3083 |
|    0 |       445 | True      |   1231.5 |  1263.5  |      495 |            3777 |
|    0 |       446 | True      |   2052.5 |  1263.5  |      495 |            3427 |
|    0 |       447 | True      |    410.5 |  2105.83 |      495 |            1878 |
|    0 |       448 | True      |   1231.5 |  2105.83 |      495 |            2238 |
|    0 |       449 | True      |   2052.5 |  2105.83 |      495 |            2029 |
|    0 |       450 | True      |    410.5 |   421.17 |      505 |            2732 |
|    0 |       451 | True      |   1231.5 |   421.17 |      505 |            3384 |
|    0 |       452 | True      |   2052.5 |   421.17 |      505 |            3072 |
|    0 |       453 | True      |    410.5 |  1263.5  |      505 |            3065 |
|    0 |       454 | True      |   1231.5 |  1263.5  |      505 |            3738 |
|    0 |       455 | True      |   2052.5 |  1263.5  |      505 |            3401 |
|    0 |       456 | True      |    410.5 |  2105.83 |      505 |            1902 |
|    0 |       457 | True      |   1231.5 |  2105.83 |      505 |            2261 |
|    0 |       458 | True      |   2052.5 |  2105.83 |      505 |            2045 |
|    0 |       459 | True      |    410.5 |   421.17 |      515 |            2669 |
|    0 |       460 | True      |   1231.5 |   421.17 |      515 |            3297 |
|    0 |       461 | True      |   2052.5 |   421.17 |      515 |            2997 |
|    0 |       462 | True      |    410.5 |  1263.5  |      515 |            2986 |
|    0 |       463 | True      |   1231.5 |  1263.5  |      515 |            3641 |
|    0 |       464 | True      |   2052.5 |  1263.5  |      515 |            3317 |
|    0 |       465 | True      |    410.5 |  2105.83 |      515 |            1884 |
|    0 |       466 | True      |   1231.5 |  2105.83 |      515 |            2254 |
|    0 |       467 | True      |   2052.5 |  2105.83 |      515 |            2028 |
|    0 |       468 | True      |    410.5 |   421.17 |      525 |            2651 |
|    0 |       469 | True      |   1231.5 |   421.17 |      525 |            3275 |
|    0 |       470 | True      |   2052.5 |   421.17 |      525 |            2984 |
|    0 |       471 | True      |    410.5 |  1263.5  |      525 |            2936 |
|    0 |       472 | True      |   1231.5 |  1263.5  |      525 |            3584 |
|    0 |       473 | True      |   2052.5 |  1263.5  |      525 |            3272 |
|    0 |       474 | True      |    410.5 |  2105.83 |      525 |            1867 |
|    0 |       475 | True      |   1231.5 |  2105.83 |      525 |            2242 |
|    0 |       476 | True      |   2052.5 |  2105.83 |      525 |            2011 |
|    0 |       477 | True      |    410.5 |   421.17 |      535 |            2573 |
|    0 |       478 | True      |   1231.5 |   421.17 |      535 |            3215 |
|    0 |       479 | True      |   2052.5 |   421.17 |      535 |            2930 |
|    0 |       480 | True      |    410.5 |  1263.5  |      535 |            2857 |
|    0 |       481 | True      |   1231.5 |  1263.5  |      535 |            3520 |
|    0 |       482 | True      |   2052.5 |  1263.5  |      535 |            3211 |
|    0 |       483 | True      |    410.5 |  2105.83 |      535 |            1863 |
|    0 |       484 | True      |   1231.5 |  2105.83 |      535 |            2254 |
|    0 |       485 | True      |   2052.5 |  2105.83 |      535 |            2018 |
|    0 |       486 | True      |    410.5 |   421.17 |      545 |            2567 |
|    0 |       487 | True      |   1231.5 |   421.17 |      545 |            3227 |
|    0 |       488 | True      |   2052.5 |   421.17 |      545 |            2947 |
|    0 |       489 | True      |    410.5 |  1263.5  |      545 |            2832 |
|    0 |       490 | True      |   1231.5 |  1263.5  |      545 |            3512 |
|    0 |       491 | True      |   2052.5 |  1263.5  |      545 |            3211 |
|    0 |       492 | True      |    410.5 |  2105.83 |      545 |            1864 |
|    0 |       493 | True      |   1231.5 |  2105.83 |      545 |            2268 |
|    0 |       494 | True      |   2052.5 |  2105.83 |      545 |            2040 |
|    0 |       495 | True      |    410.5 |   421.17 |      555 |            2515 |
|    0 |       496 | True      |   1231.5 |   421.17 |      555 |            3161 |
|    0 |       497 | True      |   2052.5 |   421.17 |      555 |            2887 |
|    0 |       498 | True      |    410.5 |  1263.5  |      555 |            2800 |
|    0 |       499 | True      |   1231.5 |  1263.5  |      555 |            3471 |
|    0 |       500 | True      |   2052.5 |  1263.5  |      555 |            3170 |
|    0 |       501 | True      |    410.5 |  2105.83 |      555 |            1919 |
|    0 |       502 | True      |   1231.5 |  2105.83 |      555 |            2340 |
|    0 |       503 | True      |   2052.5 |  2105.83 |      555 |            2106 |
|    0 |       504 | True      |    410.5 |   421.17 |      565 |            2445 |
|    0 |       505 | True      |   1231.5 |   421.17 |      565 |            3064 |
|    0 |       506 | True      |   2052.5 |   421.17 |      565 |            2791 |
|    0 |       507 | True      |    410.5 |  1263.5  |      565 |            2730 |
|    0 |       508 | True      |   1231.5 |  1263.5  |      565 |            3383 |
|    0 |       509 | True      |   2052.5 |  1263.5  |      565 |            3075 |
|    0 |       510 | True      |    410.5 |  2105.83 |      565 |            1906 |
|    0 |       511 | True      |   1231.5 |  2105.83 |      565 |            2338 |
|    0 |       512 | True      |   2052.5 |  2105.83 |      565 |            2088 |
|    0 |       513 | True      |    410.5 |   421.17 |      575 |            2422 |
|    0 |       514 | True      |   1231.5 |   421.17 |      575 |            3031 |
|    0 |       515 | True      |   2052.5 |   421.17 |      575 |            2761 |
|    0 |       516 | True      |    410.5 |  1263.5  |      575 |            2770 |
|    0 |       517 | True      |   1231.5 |  1263.5  |      575 |            3426 |
|    0 |       518 | True      |   2052.5 |  1263.5  |      575 |            3110 |
|    0 |       519 | True      |    410.5 |  2105.83 |      575 |            1974 |
|    0 |       520 | True      |   1231.5 |  2105.83 |      575 |            2439 |
|    0 |       521 | True      |   2052.5 |  2105.83 |      575 |            2180 |
|    0 |       522 | True      |    410.5 |   421.17 |      585 |            2385 |
|    0 |       523 | True      |   1231.5 |   421.17 |      585 |            3000 |
|    0 |       524 | True      |   2052.5 |   421.17 |      585 |            2730 |
|    0 |       525 | True      |    410.5 |  1263.5  |      585 |            2785 |
|    0 |       526 | True      |   1231.5 |  1263.5  |      585 |            3455 |
|    0 |       527 | True      |   2052.5 |  1263.5  |      585 |            3143 |
|    0 |       528 | True      |    410.5 |  2105.83 |      585 |            2009 |
|    0 |       529 | True      |   1231.5 |  2105.83 |      585 |            2497 |
|    0 |       530 | True      |   2052.5 |  2105.83 |      585 |            2240 |
|    0 |       531 | True      |    410.5 |   421.17 |      595 |            2428 |
|    0 |       532 | True      |   1231.5 |   421.17 |      595 |            3052 |
|    0 |       533 | True      |   2052.5 |   421.17 |      595 |            2795 |
|    0 |       534 | True      |    410.5 |  1263.5  |      595 |            2898 |
|    0 |       535 | True      |   1231.5 |  1263.5  |      595 |            3595 |
|    0 |       536 | True      |   2052.5 |  1263.5  |      595 |            3295 |
|    0 |       537 | True      |    410.5 |  2105.83 |      595 |            2115 |
|    0 |       538 | True      |   1231.5 |  2105.83 |      595 |            2635 |
|    0 |       539 | True      |   2052.5 |  2105.83 |      595 |            2388 |
|    0 |       540 | True      |    410.5 |   421.17 |      605 |            2419 |
|    0 |       541 | True      |   1231.5 |   421.17 |      605 |            3042 |
|    0 |       542 | True      |   2052.5 |   421.17 |      605 |            2777 |
|    0 |       543 | True      |    410.5 |  1263.5  |      605 |            2933 |
|    0 |       544 | True      |   1231.5 |  1263.5  |      605 |            3641 |
|    0 |       545 | True      |   2052.5 |  1263.5  |      605 |            3331 |
|    0 |       546 | True      |    410.5 |  2105.83 |      605 |            2177 |
|    0 |       547 | True      |   1231.5 |  2105.83 |      605 |            2707 |
|    0 |       548 | True      |   2052.5 |  2105.83 |      605 |            2442 |
|    0 |       549 | True      |    410.5 |   421.17 |      615 |            2471 |
|    0 |       550 | True      |   1231.5 |   421.17 |      615 |            3074 |
|    0 |       551 | True      |   2052.5 |   421.17 |      615 |            2780 |
|    0 |       552 | True      |    410.5 |  1263.5  |      615 |            3006 |
|    0 |       553 | True      |   1231.5 |  1263.5  |      615 |            3709 |
|    0 |       554 | True      |   2052.5 |  1263.5  |      615 |            3363 |
|    0 |       555 | True      |    410.5 |  2105.83 |      615 |            2252 |
|    0 |       556 | True      |   1231.5 |  2105.83 |      615 |            2788 |
|    0 |       557 | True      |   2052.5 |  2105.83 |      615 |            2496 |
|    0 |       558 | True      |    410.5 |   421.17 |      625 |            2416 |
|    0 |       559 | True      |   1231.5 |   421.17 |      625 |            2984 |
|    0 |       560 | True      |   2052.5 |   421.17 |      625 |            2678 |
|    0 |       561 | True      |    410.5 |  1263.5  |      625 |            2951 |
|    0 |       562 | True      |   1231.5 |  1263.5  |      625 |            3627 |
|    0 |       563 | True      |   2052.5 |  1263.5  |      625 |            3276 |
|    0 |       564 | True      |    410.5 |  2105.83 |      625 |            2252 |
|    0 |       565 | True      |   1231.5 |  2105.83 |      625 |            2790 |
|    0 |       566 | True      |   2052.5 |  2105.83 |      625 |            2495 |
|    0 |       567 | True      |    410.5 |   421.17 |      635 |            2337 |
|    0 |       568 | True      |   1231.5 |   421.17 |      635 |            2856 |
|    0 |       569 | True      |   2052.5 |   421.17 |      635 |            2557 |
|    0 |       570 | True      |    410.5 |  1263.5  |      635 |            2863 |
|    0 |       571 | True      |   1231.5 |  1263.5  |      635 |            3499 |
|    0 |       572 | True      |   2052.5 |  1263.5  |      635 |            3160 |
|    0 |       573 | True      |    410.5 |  2105.83 |      635 |            2231 |
|    0 |       574 | True      |   1231.5 |  2105.83 |      635 |            2763 |
|    0 |       575 | True      |   2052.5 |  2105.83 |      635 |            2472 |
|    0 |       576 | True      |    410.5 |   421.17 |      645 |            2268 |
|    0 |       577 | True      |   1231.5 |   421.17 |      645 |            2770 |
|    0 |       578 | True      |   2052.5 |   421.17 |      645 |            2481 |
|    0 |       579 | True      |    410.5 |  1263.5  |      645 |            2868 |
|    0 |       580 | True      |   1231.5 |  1263.5  |      645 |            3508 |
|    0 |       581 | True      |   2052.5 |  1263.5  |      645 |            3170 |
|    0 |       582 | True      |    410.5 |  2105.83 |      645 |            2301 |
|    0 |       583 | True      |   1231.5 |  2105.83 |      645 |            2851 |
|    0 |       584 | True      |   2052.5 |  2105.83 |      645 |            2549 |
|    0 |       585 | True      |    410.5 |   421.17 |      655 |            2288 |
|    0 |       586 | True      |   1231.5 |   421.17 |      655 |            2796 |
|    0 |       587 | True      |   2052.5 |   421.17 |      655 |            2487 |
|    0 |       588 | True      |    410.5 |  1263.5  |      655 |            2965 |
|    0 |       589 | True      |   1231.5 |  1263.5  |      655 |            3645 |
|    0 |       590 | True      |   2052.5 |  1263.5  |      655 |            3275 |
|    0 |       591 | True      |    410.5 |  2105.83 |      655 |            2397 |
|    0 |       592 | True      |   1231.5 |  2105.83 |      655 |            2987 |
|    0 |       593 | True      |   2052.5 |  2105.83 |      655 |            2650 |
|    0 |       594 | True      |    410.5 |   421.17 |      665 |            2330 |
|    0 |       595 | True      |   1231.5 |   421.17 |      665 |            2848 |
|    0 |       596 | True      |   2052.5 |   421.17 |      665 |            2529 |
|    0 |       597 | True      |    410.5 |  1263.5  |      665 |            3092 |
|    0 |       598 | True      |   1231.5 |  1263.5  |      665 |            3803 |
|    0 |       599 | True      |   2052.5 |  1263.5  |      665 |            3409 |
|    0 |       600 | True      |    410.5 |  2105.83 |      665 |            2534 |
|    0 |       601 | True      |   1231.5 |  2105.83 |      665 |            3146 |
|    0 |       602 | True      |   2052.5 |  2105.83 |      665 |            2785 |
|    0 |       603 | True      |    410.5 |   421.17 |      675 |            2325 |
|    0 |       604 | True      |   1231.5 |   421.17 |      675 |            2846 |
|    0 |       605 | True      |   2052.5 |   421.17 |      675 |            2533 |
|    0 |       606 | True      |    410.5 |  1263.5  |      675 |            3104 |
|    0 |       607 | True      |   1231.5 |  1263.5  |      675 |            3830 |
|    0 |       608 | True      |   2052.5 |  1263.5  |      675 |            3437 |
|    0 |       609 | True      |    410.5 |  2105.83 |      675 |            2552 |
|    0 |       610 | True      |   1231.5 |  2105.83 |      675 |            3179 |
|    0 |       611 | True      |   2052.5 |  2105.83 |      675 |            2820 |
|    0 |       612 | True      |    410.5 |   421.17 |      685 |            2313 |
|    0 |       613 | True      |   1231.5 |   421.17 |      685 |            2806 |
|    0 |       614 | True      |   2052.5 |   421.17 |      685 |            2503 |
|    0 |       615 | True      |    410.5 |  1263.5  |      685 |            3139 |
|    0 |       616 | True      |   1231.5 |  1263.5  |      685 |            3843 |
|    0 |       617 | True      |   2052.5 |  1263.5  |      685 |            3450 |
|    0 |       618 | True      |    410.5 |  2105.83 |      685 |            2596 |
|    0 |       619 | True      |   1231.5 |  2105.83 |      685 |            3209 |
|    0 |       620 | True      |   2052.5 |  2105.83 |      685 |            2856 |
|    0 |       621 | True      |    410.5 |   421.17 |      695 |            2308 |
|    0 |       622 | True      |   1231.5 |   421.17 |      695 |            2797 |
|    0 |       623 | True      |   2052.5 |   421.17 |      695 |            2481 |
|    0 |       624 | True      |    410.5 |  1263.5  |      695 |            3174 |
|    0 |       625 | True      |   1231.5 |  1263.5  |      695 |            3916 |
|    0 |       626 | True      |   2052.5 |  1263.5  |      695 |            3511 |
|    0 |       627 | True      |    410.5 |  2105.83 |      695 |            2603 |
|    0 |       628 | True      |   1231.5 |  2105.83 |      695 |            3257 |
|    0 |       629 | True      |   2052.5 |  2105.83 |      695 |            2902 |
|    0 |       630 | True      |    410.5 |   421.17 |      705 |            2318 |
|    0 |       631 | True      |   1231.5 |   421.17 |      705 |            2782 |
|    0 |       632 | True      |   2052.5 |   421.17 |      705 |            2465 |
|    0 |       633 | True      |    410.5 |  1263.5  |      705 |            3283 |
|    0 |       634 | True      |   1231.5 |  1263.5  |      705 |            4041 |
|    0 |       635 | True      |   2052.5 |  1263.5  |      705 |            3630 |
|    0 |       636 | True      |    410.5 |  2105.83 |      705 |            2677 |
|    0 |       637 | True      |   1231.5 |  2105.83 |      705 |            3356 |
|    0 |       638 | True      |   2052.5 |  2105.83 |      705 |            2999 |
|    0 |       639 | True      |    410.5 |   421.17 |      715 |            1546 |
|    0 |       640 | True      |   1231.5 |   421.17 |      715 |            1859 |
|    0 |       641 | True      |   2052.5 |   421.17 |      715 |            1648 |
|    0 |       642 | True      |    410.5 |  1263.5  |      715 |            2215 |
|    0 |       643 | True      |   1231.5 |  1263.5  |      715 |            2744 |
|    0 |       644 | True      |   2052.5 |  1263.5  |      715 |            2470 |
|    0 |       645 | True      |    410.5 |  2105.83 |      715 |            1801 |
|    0 |       646 | True      |   1231.5 |  2105.83 |      715 |            2273 |
|    0 |       647 | True      |   2052.5 |  2105.83 |      715 |            2035 |
+------+-----------+-----------+----------+----------+----------+-----------------+


Timing information for reference profile formation
+-------------------+----------------+
| Read time         | 158.05 seconds |
| Extract time      | 0.52 seconds   |
| Pre-process time  | 0.09 seconds   |
| Process time      | 31.70 seconds  |
| Post-process time | 0.00 seconds   |
| Total time        | 194.38 seconds |
+-------------------+----------------+

================================================================================

Integrating reflections

 Split 12313 reflections overlapping job boundaries

Memory situation report:
  Available system memory (excluding swap)          : 13.9 GB
  Available swap memory                             :  6.1 GB
  Available system memory (including swap)          : 20.0 GB
  Maximum memory for processing (including swap)    : 18.0 GB
  Maximum memory for processing (excluding swap)    : 12.5 GB
  Memory required per process                       :  0.0 GB
  no memory ulimit set

Processing reflections in the following blocks of images:

 block_size: 6 frames

+-----+---------+--------------+------------+--------------+------------+-----------------+
|   # |   Group |   Frame From |   Frame To |   Angle From |   Angle To |   # Reflections |
|-----+---------+--------------+------------+--------------+------------+-----------------|
|   0 |       0 |            1 |          6 |          0   |        3   |            3302 |
|   1 |       0 |            4 |          9 |          1.5 |        4.5 |            1627 |
|   2 |       0 |            7 |         12 |          3   |        6   |            1513 |
|   3 |       0 |           10 |         15 |          4.5 |        7.5 |            1549 |
|   4 |       0 |           13 |         18 |          6   |        9   |            1550 |
|   5 |       0 |           16 |         21 |          7.5 |       10.5 |            1604 |
|   6 |       0 |           19 |         24 |          9   |       12   |            1561 |
|   7 |       0 |           22 |         27 |         10.5 |       13.5 |            1578 |
|   8 |       0 |           25 |         30 |         12   |       15   |            1580 |
|   9 |       0 |           28 |         33 |         13.5 |       16.5 |            1585 |
|  10 |       0 |           31 |         36 |         15   |       18   |            1560 |
|  11 |       0 |           34 |         39 |         16.5 |       19.5 |            1552 |
|  12 |       0 |           37 |         42 |         18   |       21   |            1522 |
|  13 |       0 |           40 |         45 |         19.5 |       22.5 |            1538 |
|  14 |       0 |           43 |         48 |         21   |       24   |            1564 |
|  15 |       0 |           46 |         51 |         22.5 |       25.5 |            1549 |
|  16 |       0 |           49 |         54 |         24   |       27   |            1572 |
|  17 |       0 |           52 |         57 |         25.5 |       28.5 |            1536 |
|  18 |       0 |           55 |         60 |         27   |       30   |            1552 |
|  19 |       0 |           58 |         63 |         28.5 |       31.5 |            1544 |
|  20 |       0 |           61 |         66 |         30   |       33   |            1544 |
|  21 |       0 |           64 |         69 |         31.5 |       34.5 |            1567 |
|  22 |       0 |           67 |         72 |         33   |       36   |            1558 |
|  23 |       0 |           70 |         75 |         34.5 |       37.5 |            1586 |
|  24 |       0 |           73 |         78 |         36   |       39   |            1604 |
|  25 |       0 |           76 |         81 |         37.5 |       40.5 |            1553 |
|  26 |       0 |           79 |         84 |         39   |       42   |            1564 |
|  27 |       0 |           82 |         87 |         40.5 |       43.5 |            1540 |
|  28 |       0 |           85 |         90 |         42   |       45   |            1558 |
|  29 |       0 |           88 |         93 |         43.5 |       46.5 |            1629 |
|  30 |       0 |           91 |         96 |         45   |       48   |            1537 |
|  31 |       0 |           94 |         99 |         46.5 |       49.5 |            1572 |
|  32 |       0 |           97 |        102 |         48   |       51   |            1498 |
|  33 |       0 |          100 |        105 |         49.5 |       52.5 |            1617 |
|  34 |       0 |          103 |        108 |         51   |       54   |            1575 |
|  35 |       0 |          106 |        111 |         52.5 |       55.5 |            1562 |
|  36 |       0 |          109 |        114 |         54   |       57   |            1541 |
|  37 |       0 |          112 |        117 |         55.5 |       58.5 |            1588 |
|  38 |       0 |          115 |        120 |         57   |       60   |            1560 |
|  39 |       0 |          118 |        123 |         58.5 |       61.5 |            1517 |
|  40 |       0 |          121 |        126 |         60   |       63   |            1604 |
|  41 |       0 |          124 |        129 |         61.5 |       64.5 |            1528 |
|  42 |       0 |          127 |        132 |         63   |       66   |            1551 |
|  43 |       0 |          130 |        135 |         64.5 |       67.5 |            1594 |
|  44 |       0 |          133 |        138 |         66   |       69   |            1557 |
|  45 |       0 |          136 |        141 |         67.5 |       70.5 |            1582 |
|  46 |       0 |          139 |        144 |         69   |       72   |            1537 |
|  47 |       0 |          142 |        147 |         70.5 |       73.5 |            1549 |
|  48 |       0 |          145 |        150 |         72   |       75   |            1586 |
|  49 |       0 |          148 |        153 |         73.5 |       76.5 |            1543 |
|  50 |       0 |          151 |        156 |         75   |       78   |            1556 |
|  51 |       0 |          154 |        159 |         76.5 |       79.5 |            1552 |
|  52 |       0 |          157 |        162 |         78   |       81   |            1596 |
|  53 |       0 |          160 |        165 |         79.5 |       82.5 |            1525 |
|  54 |       0 |          163 |        168 |         81   |       84   |            1562 |
|  55 |       0 |          166 |        171 |         82.5 |       85.5 |            1556 |
|  56 |       0 |          169 |        174 |         84   |       87   |            1575 |
|  57 |       0 |          172 |        177 |         85.5 |       88.5 |            1569 |
|  58 |       0 |          175 |        180 |         87   |       90   |            1539 |
|  59 |       0 |          178 |        183 |         88.5 |       91.5 |            1547 |
|  60 |       0 |          181 |        186 |         90   |       93   |            1574 |
|  61 |       0 |          184 |        189 |         91.5 |       94.5 |            1560 |
|  62 |       0 |          187 |        192 |         93   |       96   |            1544 |
|  63 |       0 |          190 |        195 |         94.5 |       97.5 |            1577 |
|  64 |       0 |          193 |        198 |         96   |       99   |            1563 |
|  65 |       0 |          196 |        201 |         97.5 |      100.5 |            1554 |
|  66 |       0 |          199 |        204 |         99   |      102   |            1567 |
|  67 |       0 |          202 |        207 |        100.5 |      103.5 |            1562 |
|  68 |       0 |          205 |        210 |        102   |      105   |            1554 |
|  69 |       0 |          208 |        213 |        103.5 |      106.5 |            1547 |
|  70 |       0 |          211 |        216 |        105   |      108   |            1558 |
|  71 |       0 |          214 |        219 |        106.5 |      109.5 |            1577 |
|  72 |       0 |          217 |        222 |        108   |      111   |            1574 |
|  73 |       0 |          220 |        225 |        109.5 |      112.5 |            1545 |
|  74 |       0 |          223 |        228 |        111   |      114   |            1572 |
|  75 |       0 |          226 |        231 |        112.5 |      115.5 |            1544 |
|  76 |       0 |          229 |        234 |        114   |      117   |            1583 |
|  77 |       0 |          232 |        237 |        115.5 |      118.5 |            1559 |
|  78 |       0 |          235 |        240 |        117   |      120   |            1540 |
|  79 |       0 |          238 |        243 |        118.5 |      121.5 |            1581 |
|  80 |       0 |          241 |        246 |        120   |      123   |            1591 |
|  81 |       0 |          244 |        249 |        121.5 |      124.5 |            1565 |
|  82 |       0 |          247 |        252 |        123   |      126   |            1551 |
|  83 |       0 |          250 |        255 |        124.5 |      127.5 |            1564 |
|  84 |       0 |          253 |        258 |        126   |      129   |            1542 |
|  85 |       0 |          256 |        261 |        127.5 |      130.5 |            1583 |
|  86 |       0 |          259 |        264 |        129   |      132   |            1540 |
|  87 |       0 |          262 |        267 |        130.5 |      133.5 |            1560 |
|  88 |       0 |          265 |        270 |        132   |      135   |            1591 |
|  89 |       0 |          268 |        273 |        133.5 |      136.5 |            1583 |
|  90 |       0 |          271 |        276 |        135   |      138   |            1544 |
|  91 |       0 |          274 |        279 |        136.5 |      139.5 |            1521 |
|  92 |       0 |          277 |        282 |        138   |      141   |            1538 |
|  93 |       0 |          280 |        285 |        139.5 |      142.5 |            1566 |
|  94 |       0 |          283 |        288 |        141   |      144   |            1586 |
|  95 |       0 |          286 |        291 |        142.5 |      145.5 |            1564 |
|  96 |       0 |          289 |        294 |        144   |      147   |            1552 |
|  97 |       0 |          292 |        297 |        145.5 |      148.5 |            1541 |
|  98 |       0 |          295 |        300 |        147   |      150   |            1599 |
|  99 |       0 |          298 |        303 |        148.5 |      151.5 |            1573 |
| 100 |       0 |          301 |        306 |        150   |      153   |            1564 |
| 101 |       0 |          304 |        309 |        151.5 |      154.5 |            1531 |
| 102 |       0 |          307 |        312 |        153   |      156   |            1595 |
| 103 |       0 |          310 |        315 |        154.5 |      157.5 |            1547 |
| 104 |       0 |          313 |        318 |        156   |      159   |            1597 |
| 105 |       0 |          316 |        321 |        157.5 |      160.5 |            1522 |
| 106 |       0 |          319 |        324 |        159   |      162   |            1588 |
| 107 |       0 |          322 |        327 |        160.5 |      163.5 |            1540 |
| 108 |       0 |          325 |        330 |        162   |      165   |            1553 |
| 109 |       0 |          328 |        333 |        163.5 |      166.5 |            1574 |
| 110 |       0 |          331 |        336 |        165   |      168   |            1549 |
| 111 |       0 |          334 |        339 |        166.5 |      169.5 |            1570 |
| 112 |       0 |          337 |        342 |        168   |      171   |            1559 |
| 113 |       0 |          340 |        345 |        169.5 |      172.5 |            1564 |
| 114 |       0 |          343 |        348 |        171   |      174   |            1582 |
| 115 |       0 |          346 |        351 |        172.5 |      175.5 |            1535 |
| 116 |       0 |          349 |        354 |        174   |      177   |            1556 |
| 117 |       0 |          352 |        357 |        175.5 |      178.5 |            1566 |
| 118 |       0 |          355 |        360 |        177   |      180   |            1575 |
| 119 |       0 |          358 |        363 |        178.5 |      181.5 |            1541 |
| 120 |       0 |          361 |        366 |        180   |      183   |            1563 |
| 121 |       0 |          364 |        369 |        181.5 |      184.5 |            1620 |
| 122 |       0 |          367 |        372 |        183   |      186   |            1500 |
| 123 |       0 |          370 |        375 |        184.5 |      187.5 |            1538 |
| 124 |       0 |          373 |        378 |        186   |      189   |            1597 |
| 125 |       0 |          376 |        381 |        187.5 |      190.5 |            1628 |
| 126 |       0 |          379 |        384 |        189   |      192   |            1568 |
| 127 |       0 |          382 |        387 |        190.5 |      193.5 |            1548 |
| 128 |       0 |          385 |        390 |        192   |      195   |            1575 |
| 129 |       0 |          388 |        393 |        193.5 |      196.5 |            1568 |
| 130 |       0 |          391 |        396 |        195   |      198   |            1597 |
| 131 |       0 |          394 |        399 |        196.5 |      199.5 |            1540 |
| 132 |       0 |          397 |        402 |        198   |      201   |            1528 |
| 133 |       0 |          400 |        405 |        199.5 |      202.5 |            1554 |
| 134 |       0 |          403 |        408 |        201   |      204   |            1580 |
| 135 |       0 |          406 |        411 |        202.5 |      205.5 |            1558 |
| 136 |       0 |          409 |        414 |        204   |      207   |            1584 |
| 137 |       0 |          412 |        417 |        205.5 |      208.5 |            1570 |
| 138 |       0 |          415 |        420 |        207   |      210   |            1561 |
| 139 |       0 |          418 |        423 |        208.5 |      211.5 |            1548 |
| 140 |       0 |          421 |        426 |        210   |      213   |            1556 |
| 141 |       0 |          424 |        429 |        211.5 |      214.5 |            1543 |
| 142 |       0 |          427 |        432 |        213   |      216   |            1565 |
| 143 |       0 |          430 |        435 |        214.5 |      217.5 |            1579 |
| 144 |       0 |          433 |        438 |        216   |      219   |            1591 |
| 145 |       0 |          436 |        441 |        217.5 |      220.5 |            1555 |
| 146 |       0 |          439 |        444 |        219   |      222   |            1559 |
| 147 |       0 |          442 |        447 |        220.5 |      223.5 |            1552 |
| 148 |       0 |          445 |        450 |        222   |      225   |            1551 |
| 149 |       0 |          448 |        453 |        223.5 |      226.5 |            1619 |
| 150 |       0 |          451 |        456 |        225   |      228   |            1536 |
| 151 |       0 |          454 |        459 |        226.5 |      229.5 |            1559 |
| 152 |       0 |          457 |        462 |        228   |      231   |            1495 |
| 153 |       0 |          460 |        465 |        229.5 |      232.5 |            1637 |
| 154 |       0 |          463 |        468 |        231   |      234   |            1585 |
| 155 |       0 |          466 |        471 |        232.5 |      235.5 |            1543 |
| 156 |       0 |          469 |        474 |        234   |      237   |            1542 |
| 157 |       0 |          472 |        477 |        235.5 |      238.5 |            1585 |
| 158 |       0 |          475 |        480 |        237   |      240   |            1572 |
| 159 |       0 |          478 |        483 |        238.5 |      241.5 |            1514 |
| 160 |       0 |          481 |        486 |        240   |      243   |            1596 |
| 161 |       0 |          484 |        489 |        241.5 |      244.5 |            1530 |
| 162 |       0 |          487 |        492 |        243   |      246   |            1577 |
| 163 |       0 |          490 |        495 |        244.5 |      247.5 |            1582 |
| 164 |       0 |          493 |        498 |        246   |      249   |            1545 |
| 165 |       0 |          496 |        501 |        247.5 |      250.5 |            1591 |
| 166 |       0 |          499 |        504 |        249   |      252   |            1538 |
| 167 |       0 |          502 |        507 |        250.5 |      253.5 |            1570 |
| 168 |       0 |          505 |        510 |        252   |      255   |            1564 |
| 169 |       0 |          508 |        513 |        253.5 |      256.5 |            1578 |
| 170 |       0 |          511 |        516 |        255   |      258   |            1573 |
| 171 |       0 |          514 |        519 |        256.5 |      259.5 |            1540 |
| 172 |       0 |          517 |        522 |        258   |      261   |            1589 |
| 173 |       0 |          520 |        525 |        259.5 |      262.5 |            1523 |
| 174 |       0 |          523 |        528 |        261   |      264   |            1564 |
| 175 |       0 |          526 |        531 |        262.5 |      265.5 |            1588 |
| 176 |       0 |          529 |        534 |        264   |      267   |            1557 |
| 177 |       0 |          532 |        537 |        265.5 |      268.5 |            1589 |
| 178 |       0 |          535 |        540 |        267   |      270   |            1539 |
| 179 |       0 |          538 |        543 |        268.5 |      271.5 |            1587 |
| 180 |       0 |          541 |        546 |        270   |      273   |            1561 |
| 181 |       0 |          544 |        549 |        271.5 |      274.5 |            1564 |
| 182 |       0 |          547 |        552 |        273   |      276   |            1549 |
| 183 |       0 |          550 |        555 |        274.5 |      277.5 |            1560 |
| 184 |       0 |          553 |        558 |        276   |      279   |            1590 |
| 185 |       0 |          556 |        561 |        277.5 |      280.5 |            1556 |
| 186 |       0 |          559 |        564 |        279   |      282   |            1569 |
| 187 |       0 |          562 |        567 |        280.5 |      283.5 |            1553 |
| 188 |       0 |          565 |        570 |        282   |      285   |            1524 |
| 189 |       0 |          568 |        573 |        283.5 |      286.5 |            1582 |
| 190 |       0 |          571 |        576 |        285   |      288   |            1547 |
| 191 |       0 |          574 |        579 |        286.5 |      289.5 |            1567 |
| 192 |       0 |          577 |        582 |        288   |      291   |            1577 |
| 193 |       0 |          580 |        585 |        289.5 |      292.5 |            1565 |
| 194 |       0 |          583 |        588 |        291   |      294   |            1537 |
| 195 |       0 |          586 |        591 |        292.5 |      295.5 |            1557 |
| 196 |       0 |          589 |        594 |        294   |      297   |            1577 |
| 197 |       0 |          592 |        597 |        295.5 |      298.5 |            1575 |
| 198 |       0 |          595 |        600 |        297   |      300   |            1554 |
| 199 |       0 |          598 |        603 |        298.5 |      301.5 |            1575 |
| 200 |       0 |          601 |        606 |        300   |      303   |            1580 |
| 201 |       0 |          604 |        609 |        301.5 |      304.5 |            1553 |
| 202 |       0 |          607 |        612 |        303   |      306   |            1568 |
| 203 |       0 |          610 |        615 |        304.5 |      307.5 |            1548 |
| 204 |       0 |          613 |        618 |        306   |      309   |            1559 |
| 205 |       0 |          616 |        621 |        307.5 |      310.5 |            1598 |
| 206 |       0 |          619 |        624 |        309   |      312   |            1524 |
| 207 |       0 |          622 |        627 |        310.5 |      313.5 |            1565 |
| 208 |       0 |          625 |        630 |        312   |      315   |            1598 |
| 209 |       0 |          628 |        633 |        313.5 |      316.5 |            1571 |
| 210 |       0 |          631 |        636 |        315   |      318   |            1540 |
| 211 |       0 |          634 |        639 |        316.5 |      319.5 |            1528 |
| 212 |       0 |          637 |        642 |        318   |      321   |            1553 |
| 213 |       0 |          640 |        645 |        319.5 |      322.5 |            1569 |
| 214 |       0 |          643 |        648 |        321   |      324   |            1572 |
| 215 |       0 |          646 |        651 |        322.5 |      325.5 |            1528 |
| 216 |       0 |          649 |        654 |        324   |      327   |            1553 |
| 217 |       0 |          652 |        657 |        325.5 |      328.5 |            1559 |
| 218 |       0 |          655 |        660 |        327   |      330   |            1571 |
| 219 |       0 |          658 |        663 |        328.5 |      331.5 |            1569 |
| 220 |       0 |          661 |        666 |        330   |      333   |            1571 |
| 221 |       0 |          664 |        669 |        331.5 |      334.5 |            1524 |
| 222 |       0 |          667 |        672 |        333   |      336   |            1595 |
| 223 |       0 |          670 |        675 |        334.5 |      337.5 |            1572 |
| 224 |       0 |          673 |        678 |        336   |      339   |            1566 |
| 225 |       0 |          676 |        681 |        337.5 |      340.5 |            1540 |
| 226 |       0 |          679 |        684 |        339   |      342   |            1570 |
| 227 |       0 |          682 |        687 |        340.5 |      343.5 |            1532 |
| 228 |       0 |          685 |        690 |        342   |      345   |            1575 |
| 229 |       0 |          688 |        693 |        343.5 |      346.5 |            1568 |
| 230 |       0 |          691 |        696 |        345   |      348   |            1538 |
| 231 |       0 |          694 |        699 |        346.5 |      349.5 |            1580 |
| 232 |       0 |          697 |        702 |        348   |      351   |            1564 |
| 233 |       0 |          700 |        705 |        349.5 |      352.5 |            1559 |
| 234 |       0 |          703 |        708 |        351   |      354   |            1574 |
| 235 |       0 |          706 |        711 |        352.5 |      355.5 |            1582 |
| 236 |       0 |          709 |        714 |        354   |      357   |            1536 |
| 237 |       0 |          712 |        717 |        355.5 |      358.5 |            1557 |
| 238 |       0 |          715 |        720 |        357   |      360   |            3241 |
+-----+---------+--------------+------------+--------------+------------+-----------------+

 Using multiprocessing with 4 parallel job(s)


 Frames: 0 -> 6

 Number of reflections
  Partial:     1208
  Full:        2094
  In ice ring: 0
  Integrate:   3302
  Total:       3302


 Frames: 3 -> 9

 Number of reflections
  Partial:     52
  Full:        1575
  In ice ring: 0
  Integrate:   1627
  Total:       1627


 Frames: 6 -> 12

 Number of reflections
  Partial:     50
  Full:        1463
  In ice ring: 0
  Integrate:   1513
  Total:       1513


 Frames: 9 -> 15

 Number of reflections
  Partial:     56
  Full:        1493
  In ice ring: 0
  Integrate:   1549
  Total:       1549


 Frames: 12 -> 18

 Number of reflections
  Partial:     49
  Full:        1501
  In ice ring: 0
  Integrate:   1550
  Total:       1550


 Frames: 15 -> 21

 Number of reflections
  Partial:     56
  Full:        1548
  In ice ring: 0
  Integrate:   1604
  Total:       1604


 Frames: 18 -> 24

 Number of reflections
  Partial:     63
  Full:        1498
  In ice ring: 0
  Integrate:   1561
  Total:       1561


 Frames: 21 -> 27

 Number of reflections
  Partial:     84
  Full:        1494
  In ice ring: 0
  Integrate:   1578
  Total:       1578


 Frames: 24 -> 30

 Number of reflections
  Partial:     63
  Full:        1517
  In ice ring: 0
  Integrate:   1580
  Total:       1580


 Frames: 27 -> 33

 Number of reflections
  Partial:     60
  Full:        1525
  In ice ring: 0
  Integrate:   1585
  Total:       1585


 Frames: 30 -> 36

 Number of reflections
  Partial:     51
  Full:        1509
  In ice ring: 0
  Integrate:   1560
  Total:       1560


 Frames: 33 -> 39

 Number of reflections
  Partial:     45
  Full:        1507
  In ice ring: 0
  Integrate:   1552
  Total:       1552


 Frames: 36 -> 42

 Number of reflections
  Partial:     47
  Full:        1475
  In ice ring: 0
  Integrate:   1522
  Total:       1522


 Frames: 39 -> 45

 Number of reflections
  Partial:     37
  Full:        1501
  In ice ring: 0
  Integrate:   1538
  Total:       1538


 Frames: 42 -> 48

 Number of reflections
  Partial:     40
  Full:        1524
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 45 -> 51

 Number of reflections
  Partial:     35
  Full:        1514
  In ice ring: 0
  Integrate:   1549
  Total:       1549


 Frames: 48 -> 54

 Number of reflections
  Partial:     42
  Full:        1530
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 51 -> 57

 Number of reflections
  Partial:     30
  Full:        1506
  In ice ring: 0
  Integrate:   1536
  Total:       1536


 Frames: 54 -> 60

 Number of reflections
  Partial:     26
  Full:        1526
  In ice ring: 0
  Integrate:   1552
  Total:       1552


 Frames: 57 -> 63

 Number of reflections
  Partial:     31
  Full:        1513
  In ice ring: 0
  Integrate:   1544
  Total:       1544


 Frames: 60 -> 66

 Number of reflections
  Partial:     41
  Full:        1503
  In ice ring: 0
  Integrate:   1544
  Total:       1544


 Frames: 63 -> 69

 Number of reflections
  Partial:     54
  Full:        1513
  In ice ring: 0
  Integrate:   1567
  Total:       1567


 Frames: 66 -> 72

 Number of reflections
  Partial:     51
  Full:        1507
  In ice ring: 0
  Integrate:   1558
  Total:       1558


 Frames: 69 -> 75

 Number of reflections
  Partial:     73
  Full:        1513
  In ice ring: 0
  Integrate:   1586
  Total:       1586


 Frames: 72 -> 78

 Number of reflections
  Partial:     70
  Full:        1534
  In ice ring: 0
  Integrate:   1604
  Total:       1604


 Frames: 75 -> 81

 Number of reflections
  Partial:     66
  Full:        1487
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 78 -> 84

 Number of reflections
  Partial:     57
  Full:        1507
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 81 -> 87

 Number of reflections
  Partial:     60
  Full:        1480
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 84 -> 90

 Number of reflections
  Partial:     60
  Full:        1498
  In ice ring: 0
  Integrate:   1558
  Total:       1558


 Frames: 87 -> 93

 Number of reflections
  Partial:     53
  Full:        1576
  In ice ring: 0
  Integrate:   1629
  Total:       1629


 Frames: 90 -> 96

 Number of reflections
  Partial:     51
  Full:        1486
  In ice ring: 0
  Integrate:   1537
  Total:       1537


 Frames: 93 -> 99

 Number of reflections
  Partial:     69
  Full:        1503
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 96 -> 102

 Number of reflections
  Partial:     66
  Full:        1432
  In ice ring: 0
  Integrate:   1498
  Total:       1498


 Frames: 99 -> 105

 Number of reflections
  Partial:     44
  Full:        1573
  In ice ring: 0
  Integrate:   1617
  Total:       1617


 Frames: 102 -> 108

 Number of reflections
  Partial:     50
  Full:        1525
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 105 -> 111

 Number of reflections
  Partial:     50
  Full:        1512
  In ice ring: 0
  Integrate:   1562
  Total:       1562


 Frames: 108 -> 114

 Number of reflections
  Partial:     57
  Full:        1484
  In ice ring: 0
  Integrate:   1541
  Total:       1541


 Frames: 111 -> 117

 Number of reflections
  Partial:     55
  Full:        1533
  In ice ring: 0
  Integrate:   1588
  Total:       1588


 Frames: 114 -> 120

 Number of reflections
  Partial:     49
  Full:        1511
  In ice ring: 0
  Integrate:   1560
  Total:       1560


 Frames: 117 -> 123

 Number of reflections
  Partial:     53
  Full:        1464
  In ice ring: 0
  Integrate:   1517
  Total:       1517


 Frames: 120 -> 126

 Number of reflections
  Partial:     51
  Full:        1553
  In ice ring: 0
  Integrate:   1604
  Total:       1604


 Frames: 123 -> 129

 Number of reflections
  Partial:     39
  Full:        1489
  In ice ring: 0
  Integrate:   1528
  Total:       1528


 Frames: 126 -> 132

 Number of reflections
  Partial:     47
  Full:        1504
  In ice ring: 0
  Integrate:   1551
  Total:       1551


 Frames: 129 -> 135

 Number of reflections
  Partial:     54
  Full:        1540
  In ice ring: 0
  Integrate:   1594
  Total:       1594


 Frames: 132 -> 138

 Number of reflections
  Partial:     61
  Full:        1496
  In ice ring: 0
  Integrate:   1557
  Total:       1557


 Frames: 135 -> 141

 Number of reflections
  Partial:     48
  Full:        1534
  In ice ring: 0
  Integrate:   1582
  Total:       1582


 Frames: 138 -> 144

 Number of reflections
  Partial:     38
  Full:        1499
  In ice ring: 0
  Integrate:   1537
  Total:       1537


 Frames: 141 -> 147

 Number of reflections
  Partial:     45
  Full:        1504
  In ice ring: 0
  Integrate:   1549
  Total:       1549


 Frames: 144 -> 150

 Number of reflections
  Partial:     60
  Full:        1526
  In ice ring: 0
  Integrate:   1586
  Total:       1586


 Frames: 147 -> 153

 Number of reflections
  Partial:     34
  Full:        1509
  In ice ring: 0
  Integrate:   1543
  Total:       1543


 Frames: 150 -> 156

 Number of reflections
  Partial:     46
  Full:        1510
  In ice ring: 0
  Integrate:   1556
  Total:       1556


 Frames: 153 -> 159

 Number of reflections
  Partial:     50
  Full:        1502
  In ice ring: 0
  Integrate:   1552
  Total:       1552


 Frames: 156 -> 162

 Number of reflections
  Partial:     57
  Full:        1539
  In ice ring: 0
  Integrate:   1596
  Total:       1596


 Frames: 159 -> 165

 Number of reflections
  Partial:     51
  Full:        1474
  In ice ring: 0
  Integrate:   1525
  Total:       1525


 Frames: 162 -> 168

 Number of reflections
  Partial:     47
  Full:        1515
  In ice ring: 0
  Integrate:   1562
  Total:       1562


 Frames: 165 -> 171

 Number of reflections
  Partial:     50
  Full:        1506
  In ice ring: 0
  Integrate:   1556
  Total:       1556


 Frames: 168 -> 174

 Number of reflections
  Partial:     58
  Full:        1517
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 171 -> 177

 Number of reflections
  Partial:     53
  Full:        1516
  In ice ring: 0
  Integrate:   1569
  Total:       1569


 Frames: 174 -> 180

 Number of reflections
  Partial:     40
  Full:        1499
  In ice ring: 0
  Integrate:   1539
  Total:       1539


 Frames: 177 -> 183

 Number of reflections
  Partial:     46
  Full:        1501
  In ice ring: 0
  Integrate:   1547
  Total:       1547


 Frames: 180 -> 186

 Number of reflections
  Partial:     60
  Full:        1514
  In ice ring: 0
  Integrate:   1574
  Total:       1574


 Frames: 183 -> 189

 Number of reflections
  Partial:     49
  Full:        1511
  In ice ring: 0
  Integrate:   1560
  Total:       1560


 Frames: 186 -> 192

 Number of reflections
  Partial:     52
  Full:        1492
  In ice ring: 0
  Integrate:   1544
  Total:       1544


 Frames: 189 -> 195

 Number of reflections
  Partial:     50
  Full:        1527
  In ice ring: 0
  Integrate:   1577
  Total:       1577


 Frames: 192 -> 198

 Number of reflections
  Partial:     41
  Full:        1522
  In ice ring: 0
  Integrate:   1563
  Total:       1563


 Frames: 195 -> 201

 Number of reflections
  Partial:     50
  Full:        1504
  In ice ring: 0
  Integrate:   1554
  Total:       1554


 Frames: 198 -> 204

 Number of reflections
  Partial:     62
  Full:        1505
  In ice ring: 0
  Integrate:   1567
  Total:       1567


 Frames: 201 -> 207

 Number of reflections
  Partial:     55
  Full:        1507
  In ice ring: 0
  Integrate:   1562
  Total:       1562


 Frames: 204 -> 210

 Number of reflections
  Partial:     37
  Full:        1517
  In ice ring: 0
  Integrate:   1554
  Total:       1554


 Frames: 207 -> 213

 Number of reflections
  Partial:     37
  Full:        1510
  In ice ring: 0
  Integrate:   1547
  Total:       1547


 Frames: 210 -> 216

 Number of reflections
  Partial:     64
  Full:        1494
  In ice ring: 0
  Integrate:   1558
  Total:       1558


 Frames: 213 -> 219

 Number of reflections
  Partial:     59
  Full:        1518
  In ice ring: 0
  Integrate:   1577
  Total:       1577


 Frames: 216 -> 222

 Number of reflections
  Partial:     57
  Full:        1517
  In ice ring: 0
  Integrate:   1574
  Total:       1574


 Frames: 219 -> 225

 Number of reflections
  Partial:     52
  Full:        1493
  In ice ring: 0
  Integrate:   1545
  Total:       1545


 Frames: 222 -> 228

 Number of reflections
  Partial:     48
  Full:        1524
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 225 -> 231

 Number of reflections
  Partial:     42
  Full:        1502
  In ice ring: 0
  Integrate:   1544
  Total:       1544


 Frames: 228 -> 234

 Number of reflections
  Partial:     48
  Full:        1535
  In ice ring: 0
  Integrate:   1583
  Total:       1583


 Frames: 231 -> 237

 Number of reflections
  Partial:     53
  Full:        1506
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 234 -> 240

 Number of reflections
  Partial:     57
  Full:        1483
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 237 -> 243

 Number of reflections
  Partial:     60
  Full:        1521
  In ice ring: 0
  Integrate:   1581
  Total:       1581


 Frames: 240 -> 246

 Number of reflections
  Partial:     60
  Full:        1531
  In ice ring: 0
  Integrate:   1591
  Total:       1591


 Frames: 243 -> 249

 Number of reflections
  Partial:     57
  Full:        1508
  In ice ring: 0
  Integrate:   1565
  Total:       1565


 Frames: 246 -> 252

 Number of reflections
  Partial:     33
  Full:        1518
  In ice ring: 0
  Integrate:   1551
  Total:       1551


 Frames: 249 -> 255

 Number of reflections
  Partial:     42
  Full:        1522
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 252 -> 258

 Number of reflections
  Partial:     45
  Full:        1497
  In ice ring: 0
  Integrate:   1542
  Total:       1542


 Frames: 255 -> 261

 Number of reflections
  Partial:     52
  Full:        1531
  In ice ring: 0
  Integrate:   1583
  Total:       1583


 Frames: 258 -> 264

 Number of reflections
  Partial:     59
  Full:        1481
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 261 -> 267

 Number of reflections
  Partial:     49
  Full:        1511
  In ice ring: 0
  Integrate:   1560
  Total:       1560


 Frames: 264 -> 270

 Number of reflections
  Partial:     50
  Full:        1541
  In ice ring: 0
  Integrate:   1591
  Total:       1591


 Frames: 267 -> 273

 Number of reflections
  Partial:     49
  Full:        1534
  In ice ring: 0
  Integrate:   1583
  Total:       1583


 Frames: 270 -> 276

 Number of reflections
  Partial:     38
  Full:        1506
  In ice ring: 0
  Integrate:   1544
  Total:       1544


 Frames: 273 -> 279

 Number of reflections
  Partial:     31
  Full:        1490
  In ice ring: 0
  Integrate:   1521
  Total:       1521


 Frames: 276 -> 282

 Number of reflections
  Partial:     34
  Full:        1504
  In ice ring: 0
  Integrate:   1538
  Total:       1538


 Frames: 279 -> 285

 Number of reflections
  Partial:     59
  Full:        1507
  In ice ring: 0
  Integrate:   1566
  Total:       1566


 Frames: 282 -> 288

 Number of reflections
  Partial:     54
  Full:        1532
  In ice ring: 0
  Integrate:   1586
  Total:       1586


 Frames: 285 -> 291

 Number of reflections
  Partial:     59
  Full:        1505
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 288 -> 294

 Number of reflections
  Partial:     55
  Full:        1497
  In ice ring: 0
  Integrate:   1552
  Total:       1552


 Frames: 291 -> 297

 Number of reflections
  Partial:     45
  Full:        1496
  In ice ring: 0
  Integrate:   1541
  Total:       1541


 Frames: 294 -> 300

 Number of reflections
  Partial:     55
  Full:        1544
  In ice ring: 0
  Integrate:   1599
  Total:       1599


 Frames: 297 -> 303

 Number of reflections
  Partial:     61
  Full:        1512
  In ice ring: 0
  Integrate:   1573
  Total:       1573


 Frames: 300 -> 306

 Number of reflections
  Partial:     53
  Full:        1511
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 303 -> 309

 Number of reflections
  Partial:     57
  Full:        1474
  In ice ring: 0
  Integrate:   1531
  Total:       1531


 Frames: 306 -> 312

 Number of reflections
  Partial:     43
  Full:        1552
  In ice ring: 0
  Integrate:   1595
  Total:       1595


 Frames: 309 -> 315

 Number of reflections
  Partial:     44
  Full:        1503
  In ice ring: 0
  Integrate:   1547
  Total:       1547


 Frames: 312 -> 318

 Number of reflections
  Partial:     52
  Full:        1545
  In ice ring: 0
  Integrate:   1597
  Total:       1597


 Frames: 315 -> 321

 Number of reflections
  Partial:     53
  Full:        1469
  In ice ring: 0
  Integrate:   1522
  Total:       1522


 Frames: 318 -> 324

 Number of reflections
  Partial:     50
  Full:        1538
  In ice ring: 0
  Integrate:   1588
  Total:       1588


 Frames: 321 -> 327

 Number of reflections
  Partial:     59
  Full:        1481
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 324 -> 330

 Number of reflections
  Partial:     45
  Full:        1508
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 327 -> 333

 Number of reflections
  Partial:     50
  Full:        1524
  In ice ring: 0
  Integrate:   1574
  Total:       1574


 Frames: 330 -> 336

 Number of reflections
  Partial:     45
  Full:        1504
  In ice ring: 0
  Integrate:   1549
  Total:       1549


 Frames: 333 -> 339

 Number of reflections
  Partial:     39
  Full:        1531
  In ice ring: 0
  Integrate:   1570
  Total:       1570


 Frames: 336 -> 342

 Number of reflections
  Partial:     54
  Full:        1505
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 339 -> 345

 Number of reflections
  Partial:     60
  Full:        1504
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 342 -> 348

 Number of reflections
  Partial:     55
  Full:        1527
  In ice ring: 0
  Integrate:   1582
  Total:       1582


 Frames: 345 -> 351

 Number of reflections
  Partial:     45
  Full:        1490
  In ice ring: 0
  Integrate:   1535
  Total:       1535


 Frames: 348 -> 354

 Number of reflections
  Partial:     45
  Full:        1511
  In ice ring: 0
  Integrate:   1556
  Total:       1556


 Frames: 351 -> 357

 Number of reflections
  Partial:     40
  Full:        1526
  In ice ring: 0
  Integrate:   1566
  Total:       1566


 Frames: 354 -> 360

 Number of reflections
  Partial:     58
  Full:        1517
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 357 -> 363

 Number of reflections
  Partial:     57
  Full:        1484
  In ice ring: 0
  Integrate:   1541
  Total:       1541


 Frames: 360 -> 366

 Number of reflections
  Partial:     49
  Full:        1514
  In ice ring: 0
  Integrate:   1563
  Total:       1563


 Frames: 363 -> 369

 Number of reflections
  Partial:     51
  Full:        1569
  In ice ring: 0
  Integrate:   1620
  Total:       1620


 Frames: 366 -> 372

 Number of reflections
  Partial:     54
  Full:        1446
  In ice ring: 0
  Integrate:   1500
  Total:       1500


 Frames: 369 -> 375

 Number of reflections
  Partial:     56
  Full:        1482
  In ice ring: 0
  Integrate:   1538
  Total:       1538


 Frames: 372 -> 378

 Number of reflections
  Partial:     62
  Full:        1535
  In ice ring: 0
  Integrate:   1597
  Total:       1597


 Frames: 375 -> 381

 Number of reflections
  Partial:     50
  Full:        1578
  In ice ring: 0
  Integrate:   1628
  Total:       1628


 Frames: 378 -> 384

 Number of reflections
  Partial:     72
  Full:        1496
  In ice ring: 0
  Integrate:   1568
  Total:       1568


 Frames: 381 -> 387

 Number of reflections
  Partial:     70
  Full:        1478
  In ice ring: 0
  Integrate:   1548
  Total:       1548


 Frames: 384 -> 390

 Number of reflections
  Partial:     68
  Full:        1507
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 387 -> 393

 Number of reflections
  Partial:     63
  Full:        1505
  In ice ring: 0
  Integrate:   1568
  Total:       1568


 Frames: 390 -> 396

 Number of reflections
  Partial:     52
  Full:        1545
  In ice ring: 0
  Integrate:   1597
  Total:       1597


 Frames: 393 -> 399

 Number of reflections
  Partial:     46
  Full:        1494
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 396 -> 402

 Number of reflections
  Partial:     37
  Full:        1491
  In ice ring: 0
  Integrate:   1528
  Total:       1528


 Frames: 399 -> 405

 Number of reflections
  Partial:     43
  Full:        1511
  In ice ring: 0
  Integrate:   1554
  Total:       1554


 Frames: 402 -> 408

 Number of reflections
  Partial:     51
  Full:        1529
  In ice ring: 0
  Integrate:   1580
  Total:       1580


 Frames: 405 -> 411

 Number of reflections
  Partial:     58
  Full:        1500
  In ice ring: 0
  Integrate:   1558
  Total:       1558


 Frames: 408 -> 414

 Number of reflections
  Partial:     66
  Full:        1518
  In ice ring: 0
  Integrate:   1584
  Total:       1584


 Frames: 411 -> 417

 Number of reflections
  Partial:     62
  Full:        1508
  In ice ring: 0
  Integrate:   1570
  Total:       1570


 Frames: 414 -> 420

 Number of reflections
  Partial:     42
  Full:        1519
  In ice ring: 0
  Integrate:   1561
  Total:       1561


 Frames: 417 -> 423

 Number of reflections
  Partial:     39
  Full:        1509
  In ice ring: 0
  Integrate:   1548
  Total:       1548


 Frames: 420 -> 426

 Number of reflections
  Partial:     52
  Full:        1504
  In ice ring: 0
  Integrate:   1556
  Total:       1556


 Frames: 423 -> 429

 Number of reflections
  Partial:     34
  Full:        1509
  In ice ring: 0
  Integrate:   1543
  Total:       1543


 Frames: 426 -> 432

 Number of reflections
  Partial:     37
  Full:        1528
  In ice ring: 0
  Integrate:   1565
  Total:       1565


 Frames: 429 -> 435

 Number of reflections
  Partial:     64
  Full:        1515
  In ice ring: 0
  Integrate:   1579
  Total:       1579


 Frames: 432 -> 438

 Number of reflections
  Partial:     65
  Full:        1526
  In ice ring: 0
  Integrate:   1591
  Total:       1591


 Frames: 435 -> 441

 Number of reflections
  Partial:     59
  Full:        1496
  In ice ring: 0
  Integrate:   1555
  Total:       1555


 Frames: 438 -> 444

 Number of reflections
  Partial:     49
  Full:        1510
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 441 -> 447

 Number of reflections
  Partial:     52
  Full:        1500
  In ice ring: 0
  Integrate:   1552
  Total:       1552


 Frames: 444 -> 450

 Number of reflections
  Partial:     53
  Full:        1498
  In ice ring: 0
  Integrate:   1551
  Total:       1551


 Frames: 447 -> 453

 Number of reflections
  Partial:     65
  Full:        1554
  In ice ring: 0
  Integrate:   1619
  Total:       1619


 Frames: 450 -> 456

 Number of reflections
  Partial:     48
  Full:        1488
  In ice ring: 0
  Integrate:   1536
  Total:       1536


 Frames: 453 -> 459

 Number of reflections
  Partial:     40
  Full:        1519
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 456 -> 462

 Number of reflections
  Partial:     48
  Full:        1447
  In ice ring: 0
  Integrate:   1495
  Total:       1495


 Frames: 459 -> 465

 Number of reflections
  Partial:     55
  Full:        1582
  In ice ring: 0
  Integrate:   1637
  Total:       1637


 Frames: 462 -> 468

 Number of reflections
  Partial:     51
  Full:        1534
  In ice ring: 0
  Integrate:   1585
  Total:       1585


 Frames: 465 -> 471

 Number of reflections
  Partial:     48
  Full:        1495
  In ice ring: 0
  Integrate:   1543
  Total:       1543


 Frames: 468 -> 474

 Number of reflections
  Partial:     46
  Full:        1496
  In ice ring: 0
  Integrate:   1542
  Total:       1542


 Frames: 471 -> 477

 Number of reflections
  Partial:     52
  Full:        1533
  In ice ring: 0
  Integrate:   1585
  Total:       1585


 Frames: 474 -> 480

 Number of reflections
  Partial:     59
  Full:        1513
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 477 -> 483

 Number of reflections
  Partial:     51
  Full:        1463
  In ice ring: 0
  Integrate:   1514
  Total:       1514


 Frames: 480 -> 486

 Number of reflections
  Partial:     44
  Full:        1552
  In ice ring: 0
  Integrate:   1596
  Total:       1596


 Frames: 483 -> 489

 Number of reflections
  Partial:     51
  Full:        1479
  In ice ring: 0
  Integrate:   1530
  Total:       1530


 Frames: 486 -> 492

 Number of reflections
  Partial:     53
  Full:        1524
  In ice ring: 0
  Integrate:   1577
  Total:       1577


 Frames: 489 -> 495

 Number of reflections
  Partial:     59
  Full:        1523
  In ice ring: 0
  Integrate:   1582
  Total:       1582


 Frames: 492 -> 498

 Number of reflections
  Partial:     57
  Full:        1488
  In ice ring: 0
  Integrate:   1545
  Total:       1545


 Frames: 495 -> 501

 Number of reflections
  Partial:     48
  Full:        1543
  In ice ring: 0
  Integrate:   1591
  Total:       1591


 Frames: 498 -> 504

 Number of reflections
  Partial:     48
  Full:        1490
  In ice ring: 0
  Integrate:   1538
  Total:       1538


 Frames: 501 -> 507

 Number of reflections
  Partial:     51
  Full:        1519
  In ice ring: 0
  Integrate:   1570
  Total:       1570


 Frames: 504 -> 510

 Number of reflections
  Partial:     52
  Full:        1512
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 507 -> 513

 Number of reflections
  Partial:     56
  Full:        1522
  In ice ring: 0
  Integrate:   1578
  Total:       1578


 Frames: 510 -> 516

 Number of reflections
  Partial:     62
  Full:        1511
  In ice ring: 0
  Integrate:   1573
  Total:       1573


 Frames: 513 -> 519

 Number of reflections
  Partial:     43
  Full:        1497
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 516 -> 522

 Number of reflections
  Partial:     45
  Full:        1544
  In ice ring: 0
  Integrate:   1589
  Total:       1589


 Frames: 519 -> 525

 Number of reflections
  Partial:     45
  Full:        1478
  In ice ring: 0
  Integrate:   1523
  Total:       1523


 Frames: 522 -> 528

 Number of reflections
  Partial:     44
  Full:        1520
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 525 -> 531

 Number of reflections
  Partial:     69
  Full:        1519
  In ice ring: 0
  Integrate:   1588
  Total:       1588


 Frames: 528 -> 534

 Number of reflections
  Partial:     64
  Full:        1493
  In ice ring: 0
  Integrate:   1557
  Total:       1557


 Frames: 531 -> 537

 Number of reflections
  Partial:     53
  Full:        1536
  In ice ring: 0
  Integrate:   1589
  Total:       1589


 Frames: 534 -> 540

 Number of reflections
  Partial:     51
  Full:        1488
  In ice ring: 0
  Integrate:   1539
  Total:       1539


 Frames: 537 -> 543

 Number of reflections
  Partial:     69
  Full:        1518
  In ice ring: 0
  Integrate:   1587
  Total:       1587


 Frames: 540 -> 546

 Number of reflections
  Partial:     51
  Full:        1510
  In ice ring: 0
  Integrate:   1561
  Total:       1561


 Frames: 543 -> 549

 Number of reflections
  Partial:     55
  Full:        1509
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 546 -> 552

 Number of reflections
  Partial:     55
  Full:        1494
  In ice ring: 0
  Integrate:   1549
  Total:       1549


 Frames: 549 -> 555

 Number of reflections
  Partial:     58
  Full:        1502
  In ice ring: 0
  Integrate:   1560
  Total:       1560


 Frames: 552 -> 558

 Number of reflections
  Partial:     50
  Full:        1540
  In ice ring: 0
  Integrate:   1590
  Total:       1590


 Frames: 555 -> 561

 Number of reflections
  Partial:     58
  Full:        1498
  In ice ring: 0
  Integrate:   1556
  Total:       1556


 Frames: 558 -> 564

 Number of reflections
  Partial:     50
  Full:        1519
  In ice ring: 0
  Integrate:   1569
  Total:       1569


 Frames: 561 -> 567

 Number of reflections
  Partial:     46
  Full:        1507
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 564 -> 570

 Number of reflections
  Partial:     33
  Full:        1491
  In ice ring: 0
  Integrate:   1524
  Total:       1524


 Frames: 567 -> 573

 Number of reflections
  Partial:     47
  Full:        1535
  In ice ring: 0
  Integrate:   1582
  Total:       1582


 Frames: 570 -> 576

 Number of reflections
  Partial:     47
  Full:        1500
  In ice ring: 0
  Integrate:   1547
  Total:       1547


 Frames: 573 -> 579

 Number of reflections
  Partial:     56
  Full:        1511
  In ice ring: 0
  Integrate:   1567
  Total:       1567


 Frames: 576 -> 582

 Number of reflections
  Partial:     56
  Full:        1521
  In ice ring: 0
  Integrate:   1577
  Total:       1577


 Frames: 579 -> 585

 Number of reflections
  Partial:     59
  Full:        1506
  In ice ring: 0
  Integrate:   1565
  Total:       1565


 Frames: 582 -> 588

 Number of reflections
  Partial:     43
  Full:        1494
  In ice ring: 0
  Integrate:   1537
  Total:       1537


 Frames: 585 -> 591

 Number of reflections
  Partial:     52
  Full:        1505
  In ice ring: 0
  Integrate:   1557
  Total:       1557


 Frames: 588 -> 594

 Number of reflections
  Partial:     53
  Full:        1524
  In ice ring: 0
  Integrate:   1577
  Total:       1577


 Frames: 591 -> 597

 Number of reflections
  Partial:     57
  Full:        1518
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 594 -> 600

 Number of reflections
  Partial:     69
  Full:        1485
  In ice ring: 0
  Integrate:   1554
  Total:       1554


 Frames: 597 -> 603

 Number of reflections
  Partial:     56
  Full:        1519
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 600 -> 606

 Number of reflections
  Partial:     62
  Full:        1518
  In ice ring: 0
  Integrate:   1580
  Total:       1580


 Frames: 603 -> 609

 Number of reflections
  Partial:     52
  Full:        1501
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 606 -> 612

 Number of reflections
  Partial:     46
  Full:        1522
  In ice ring: 0
  Integrate:   1568
  Total:       1568


 Frames: 609 -> 615

 Number of reflections
  Partial:     41
  Full:        1507
  In ice ring: 0
  Integrate:   1548
  Total:       1548


 Frames: 612 -> 618

 Number of reflections
  Partial:     65
  Full:        1494
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 615 -> 621

 Number of reflections
  Partial:     56
  Full:        1542
  In ice ring: 0
  Integrate:   1598
  Total:       1598


 Frames: 618 -> 624

 Number of reflections
  Partial:     55
  Full:        1469
  In ice ring: 0
  Integrate:   1524
  Total:       1524


 Frames: 621 -> 627

 Number of reflections
  Partial:     54
  Full:        1511
  In ice ring: 0
  Integrate:   1565
  Total:       1565


 Frames: 624 -> 630

 Number of reflections
  Partial:     60
  Full:        1538
  In ice ring: 0
  Integrate:   1598
  Total:       1598


 Frames: 627 -> 633

 Number of reflections
  Partial:     47
  Full:        1524
  In ice ring: 0
  Integrate:   1571
  Total:       1571


 Frames: 630 -> 636

 Number of reflections
  Partial:     40
  Full:        1500
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 633 -> 639

 Number of reflections
  Partial:     46
  Full:        1482
  In ice ring: 0
  Integrate:   1528
  Total:       1528


 Frames: 636 -> 642

 Number of reflections
  Partial:     58
  Full:        1495
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 639 -> 645

 Number of reflections
  Partial:     54
  Full:        1515
  In ice ring: 0
  Integrate:   1569
  Total:       1569


 Frames: 642 -> 648

 Number of reflections
  Partial:     55
  Full:        1517
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 645 -> 651

 Number of reflections
  Partial:     45
  Full:        1483
  In ice ring: 0
  Integrate:   1528
  Total:       1528


 Frames: 648 -> 654

 Number of reflections
  Partial:     40
  Full:        1513
  In ice ring: 0
  Integrate:   1553
  Total:       1553


 Frames: 651 -> 657

 Number of reflections
  Partial:     42
  Full:        1517
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 654 -> 660

 Number of reflections
  Partial:     46
  Full:        1525
  In ice ring: 0
  Integrate:   1571
  Total:       1571


 Frames: 657 -> 663

 Number of reflections
  Partial:     59
  Full:        1510
  In ice ring: 0
  Integrate:   1569
  Total:       1569


 Frames: 660 -> 666

 Number of reflections
  Partial:     64
  Full:        1507
  In ice ring: 0
  Integrate:   1571
  Total:       1571


 Frames: 663 -> 669

 Number of reflections
  Partial:     50
  Full:        1474
  In ice ring: 0
  Integrate:   1524
  Total:       1524


 Frames: 666 -> 672

 Number of reflections
  Partial:     52
  Full:        1543
  In ice ring: 0
  Integrate:   1595
  Total:       1595


 Frames: 669 -> 675

 Number of reflections
  Partial:     54
  Full:        1518
  In ice ring: 0
  Integrate:   1572
  Total:       1572


 Frames: 672 -> 678

 Number of reflections
  Partial:     40
  Full:        1526
  In ice ring: 0
  Integrate:   1566
  Total:       1566


 Frames: 675 -> 681

 Number of reflections
  Partial:     51
  Full:        1489
  In ice ring: 0
  Integrate:   1540
  Total:       1540


 Frames: 678 -> 684

 Number of reflections
  Partial:     51
  Full:        1519
  In ice ring: 0
  Integrate:   1570
  Total:       1570


 Frames: 681 -> 687

 Number of reflections
  Partial:     43
  Full:        1489
  In ice ring: 0
  Integrate:   1532
  Total:       1532


 Frames: 684 -> 690

 Number of reflections
  Partial:     61
  Full:        1514
  In ice ring: 0
  Integrate:   1575
  Total:       1575


 Frames: 687 -> 693

 Number of reflections
  Partial:     50
  Full:        1518
  In ice ring: 0
  Integrate:   1568
  Total:       1568


 Frames: 690 -> 696

 Number of reflections
  Partial:     47
  Full:        1491
  In ice ring: 0
  Integrate:   1538
  Total:       1538


 Frames: 693 -> 699

 Number of reflections
  Partial:     54
  Full:        1526
  In ice ring: 0
  Integrate:   1580
  Total:       1580


 Frames: 696 -> 702

 Number of reflections
  Partial:     55
  Full:        1509
  In ice ring: 0
  Integrate:   1564
  Total:       1564


 Frames: 699 -> 705

 Number of reflections
  Partial:     55
  Full:        1504
  In ice ring: 0
  Integrate:   1559
  Total:       1559


 Frames: 702 -> 708

 Number of reflections
  Partial:     64
  Full:        1510
  In ice ring: 0
  Integrate:   1574
  Total:       1574


 Frames: 705 -> 711

 Number of reflections
  Partial:     57
  Full:        1525
  In ice ring: 0
  Integrate:   1582
  Total:       1582


 Frames: 708 -> 714

 Number of reflections
  Partial:     47
  Full:        1489
  In ice ring: 0
  Integrate:   1536
  Total:       1536


 Frames: 711 -> 717

 Number of reflections
  Partial:     47
  Full:        1510
  In ice ring: 0
  Integrate:   1557
  Total:       1557


 Frames: 714 -> 720

 Number of reflections
  Partial:     1265
  Full:        1976
  In ice ring: 0
  Integrate:   3241
  Total:       3241


 Summary vs image number
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+
|   ID |   Image |   # full |   # part |   # over |   # ice |   # sum |   # prf |   Ibg |   I/sigI |   I/sigI |   CC prf |   RMSD XY |
|      |         |          |          |          |         |         |         |       |    (sum) |    (prf) |          |           |
|------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------|
|    0 |       1 |      297 |     1192 |        0 |       0 |    1269 |     460 |  0.76 |     3.87 |     9.83 |     0.75 |      0.64 |
|    0 |       2 |      475 |       14 |        0 |       0 |     419 |     413 |  0.73 |     7.05 |     7.13 |     0.73 |      0.43 |
|    0 |       3 |      493 |        4 |        0 |       0 |     427 |     423 |  0.71 |     6.43 |     6.53 |     0.72 |      0.43 |
|    0 |       4 |      507 |        4 |        0 |       0 |     428 |     423 |  0.72 |     7.37 |     7.67 |     0.72 |      0.43 |
|    0 |       5 |      522 |       24 |        0 |       0 |     459 |     454 |  0.77 |     8.35 |     8.43 |     0.72 |      0.44 |
|    0 |       6 |      504 |       17 |        0 |       0 |     448 |     443 |  0.66 |     6.59 |     6.65 |     0.72 |      0.45 |
|    0 |       7 |      530 |       16 |        0 |       0 |     462 |     459 |  0.78 |     8.68 |     8.72 |     0.72 |      0.43 |
|    0 |       8 |      542 |       24 |        0 |       0 |     474 |     467 |  0.73 |     7.48 |     7.57 |     0.72 |      0.45 |
|    0 |       9 |      496 |       21 |        0 |       0 |     433 |     428 |  0.67 |     7.64 |     7.84 |     0.71 |      0.42 |
|    0 |      10 |      475 |       23 |        0 |       0 |     418 |     407 |  0.72 |     8.94 |    10.1  |     0.72 |      0.44 |
|    0 |      11 |      461 |       41 |        0 |       0 |     420 |     414 |  0.72 |     7.13 |     7.46 |     0.71 |      0.45 |
|    0 |      12 |      514 |       13 |        0 |       0 |     450 |     446 |  0.74 |     7.8  |     7.94 |     0.73 |      0.44 |
|    0 |      13 |      508 |       14 |        0 |       0 |     433 |     428 |  0.75 |     7.33 |     7.43 |     0.73 |      0.45 |
|    0 |      14 |      494 |       36 |        0 |       0 |     449 |     443 |  0.75 |     8.73 |     8.98 |     0.73 |      0.43 |
|    0 |      15 |      493 |       25 |        0 |       0 |     435 |     428 |  0.68 |     6.79 |     6.9  |     0.71 |      0.46 |
|    0 |      16 |      514 |       19 |        0 |       0 |     458 |     452 |  0.69 |     6.73 |     6.88 |     0.71 |      0.47 |
|    0 |      17 |      518 |       31 |        0 |       0 |     451 |     447 |  0.65 |     6.47 |     6.64 |     0.72 |      0.44 |
|    0 |      18 |      510 |       14 |        0 |       0 |     439 |     430 |  0.73 |     6.88 |     7.02 |     0.72 |      0.42 |
|    0 |      19 |      486 |       16 |        0 |       0 |     412 |     407 |  0.7  |     6.57 |     6.71 |     0.71 |      0.45 |
|    0 |      20 |      518 |       41 |        0 |       0 |     479 |     475 |  0.72 |     7.44 |     7.99 |     0.7  |      0.47 |
|    0 |      21 |      507 |       18 |        0 |       0 |     446 |     433 |  0.72 |     8.16 |     8.46 |     0.72 |      0.45 |
|    0 |      22 |      511 |       14 |        0 |       0 |     449 |     444 |  0.75 |     7.38 |     7.54 |     0.72 |      0.45 |
|    0 |      23 |      477 |       28 |        0 |       0 |     436 |     431 |  0.63 |     6.86 |     6.96 |     0.71 |      0.45 |
|    0 |      24 |      492 |       21 |        0 |       0 |     425 |     420 |  0.7  |     7.41 |     7.61 |     0.72 |      0.45 |
|    0 |      25 |      505 |       20 |        0 |       0 |     453 |     440 |  0.62 |     6.4  |     6.54 |     0.7  |      0.46 |
|    0 |      26 |      519 |       56 |        0 |       0 |     496 |     487 |  0.67 |     7.46 |     7.96 |     0.71 |      0.46 |
|    0 |      27 |      493 |       17 |        0 |       0 |     441 |     436 |  0.74 |     8.02 |     8.16 |     0.73 |      0.45 |
|    0 |      28 |      498 |       24 |        0 |       0 |     447 |     439 |  0.68 |     7.25 |     7.41 |     0.71 |      0.44 |
|    0 |      29 |      516 |       27 |        0 |       0 |     474 |     468 |  0.77 |     8.9  |     9.33 |     0.71 |      0.45 |
|    0 |      30 |      490 |       19 |        0 |       0 |     438 |     430 |  0.74 |     7.29 |     7.53 |     0.72 |      0.46 |
|    0 |      31 |      517 |       31 |        0 |       0 |     446 |     441 |  0.68 |     7.36 |     7.37 |     0.72 |      0.44 |
|    0 |      32 |      532 |       24 |        0 |       0 |     459 |     451 |  0.75 |     7.76 |     7.92 |     0.72 |      0.44 |
|    0 |      33 |      472 |       26 |        0 |       0 |     425 |     418 |  0.67 |     6.78 |     6.94 |     0.72 |      0.43 |
|    0 |      34 |      515 |        8 |        0 |       0 |     452 |     442 |  0.66 |     6.67 |     6.84 |     0.72 |      0.44 |
|    0 |      35 |      505 |       24 |        0 |       0 |     454 |     449 |  0.64 |     5.98 |     6.07 |     0.71 |      0.47 |
|    0 |      36 |      476 |       10 |        0 |       0 |     415 |     410 |  0.64 |     7.14 |     7.24 |     0.71 |      0.45 |
|    0 |      37 |      503 |        8 |        0 |       0 |     431 |     426 |  0.67 |     6.25 |     6.28 |     0.71 |      0.47 |
|    0 |      38 |      508 |       24 |        0 |       0 |     430 |     423 |  0.65 |     6.5  |     6.61 |     0.72 |      0.45 |
|    0 |      39 |      484 |       15 |        0 |       0 |     416 |     411 |  0.66 |     6.98 |     7.16 |     0.71 |      0.47 |
|    0 |      40 |      530 |       12 |        0 |       0 |     469 |     463 |  0.76 |     7.77 |     7.96 |     0.73 |      0.45 |
|    0 |      41 |      481 |       31 |        0 |       0 |     438 |     433 |  0.76 |     8.15 |     8.52 |     0.72 |      0.46 |
|    0 |      42 |      521 |       15 |        0 |       0 |     439 |     435 |  0.76 |     7.14 |     7.36 |     0.72 |      0.41 |
|    0 |      43 |      491 |       14 |        0 |       0 |     442 |     437 |  0.66 |     7.18 |     7.34 |     0.72 |      0.46 |
|    0 |      44 |      494 |       20 |        0 |       0 |     426 |     420 |  0.69 |     7.27 |     7.46 |     0.72 |      0.45 |
|    0 |      45 |      527 |       54 |        0 |       0 |     457 |     445 |  0.66 |     6.83 |     6.98 |     0.72 |      0.48 |
|    0 |      46 |      473 |       12 |        0 |       0 |     423 |     415 |  0.68 |     7.72 |     8.01 |     0.71 |      0.46 |
|    0 |      47 |      522 |       15 |        0 |       0 |     462 |     454 |  0.72 |     7.16 |     7.43 |     0.71 |      0.47 |
|    0 |      48 |      487 |        6 |        0 |       0 |     427 |     422 |  0.72 |     7.66 |     7.81 |     0.73 |      0.43 |
|    0 |      49 |      519 |        4 |        0 |       0 |     446 |     442 |  0.64 |     6.89 |     6.94 |     0.7  |      0.47 |
|    0 |      50 |      502 |       27 |        0 |       0 |     455 |     451 |  0.72 |     7.58 |     7.82 |     0.73 |      0.42 |
|    0 |      51 |      522 |       10 |        0 |       0 |     442 |     433 |  0.65 |     6.58 |     6.69 |     0.7  |      0.48 |
|    0 |      52 |      487 |       36 |        0 |       0 |     434 |     428 |  0.68 |     7.78 |     8.06 |     0.73 |      0.43 |
|    0 |      53 |      525 |       15 |        0 |       0 |     465 |     458 |  0.68 |     7.37 |     7.57 |     0.71 |      0.48 |
|    0 |      54 |      492 |       11 |        0 |       0 |     425 |     417 |  0.7  |     7.68 |     7.88 |     0.74 |      0.42 |
|    0 |      55 |      526 |       30 |        0 |       0 |     461 |     453 |  0.63 |     6.63 |     6.69 |     0.71 |      0.46 |
|    0 |      56 |      485 |        9 |        0 |       0 |     417 |     413 |  0.71 |     6.81 |     6.96 |     0.72 |      0.45 |
|    0 |      57 |      526 |        0 |        0 |       0 |     441 |     435 |  0.66 |     6.23 |     6.33 |     0.71 |      0.46 |
|    0 |      58 |      489 |        7 |        0 |       0 |     439 |     434 |  0.71 |     7.6  |     7.73 |     0.73 |      0.42 |
|    0 |      59 |      518 |       12 |        0 |       0 |     454 |     452 |  0.63 |     6.7  |     6.75 |     0.71 |      0.45 |
|    0 |      60 |      486 |        3 |        0 |       0 |     400 |     394 |  0.73 |     7.93 |     8.16 |     0.72 |      0.42 |
|    0 |      61 |      530 |       13 |        0 |       0 |     466 |     459 |  0.68 |     6.67 |     6.76 |     0.72 |      0.44 |
|    0 |      62 |      465 |       18 |        0 |       0 |     415 |     408 |  0.64 |     6.36 |     6.45 |     0.72 |      0.47 |
|    0 |      63 |      528 |        6 |        0 |       0 |     454 |     448 |  0.72 |     7.2  |     7.25 |     0.73 |      0.44 |
|    0 |      64 |      500 |        7 |        0 |       0 |     419 |     412 |  0.69 |     7.76 |     7.86 |     0.72 |      0.46 |
|    0 |      65 |      497 |       27 |        0 |       0 |     452 |     443 |  0.66 |     6.65 |     6.79 |     0.71 |      0.46 |
|    0 |      66 |      521 |       13 |        0 |       0 |     456 |     449 |  0.71 |     7.55 |     7.76 |     0.73 |      0.47 |
|    0 |      67 |      489 |        0 |        0 |       0 |     423 |     419 |  0.7  |     7.52 |     7.58 |     0.71 |      0.47 |
|    0 |      68 |      503 |       59 |        0 |       0 |     470 |     459 |  0.72 |     7.54 |     8.13 |     0.72 |      0.44 |
|    0 |      69 |      521 |       16 |        0 |       0 |     445 |     438 |  0.67 |     6.6  |     6.72 |     0.72 |      0.46 |
|    0 |      70 |      471 |        4 |        0 |       0 |     406 |     406 |  0.69 |     7.16 |     7.12 |     0.73 |      0.44 |
|    0 |      71 |      516 |       37 |        0 |       0 |     474 |     462 |  0.7  |     8.02 |     8.1  |     0.72 |      0.44 |
|    0 |      72 |      496 |       29 |        0 |       0 |     445 |     439 |  0.6  |     6.46 |     6.54 |     0.71 |      0.45 |
|    0 |      73 |      523 |       34 |        0 |       0 |     469 |     462 |  0.7  |     6.83 |     7.14 |     0.72 |      0.45 |
|    0 |      74 |      512 |       33 |        0 |       0 |     457 |     448 |  0.65 |     6.27 |     6.53 |     0.71 |      0.45 |
|    0 |      75 |      472 |       16 |        0 |       0 |     428 |     420 |  0.64 |     6.15 |     6.34 |     0.71 |      0.44 |
|    0 |      76 |      551 |       15 |        0 |       0 |     475 |     469 |  0.64 |     6.85 |     6.97 |     0.72 |      0.45 |
|    0 |      77 |      474 |       32 |        0 |       0 |     426 |     422 |  0.68 |     6.89 |     7.19 |     0.72 |      0.46 |
|    0 |      78 |      501 |       21 |        0 |       0 |     434 |     427 |  0.65 |     6.63 |     6.72 |     0.71 |      0.45 |
|    0 |      79 |      508 |       14 |        0 |       0 |     446 |     437 |  0.69 |     7.12 |     7.47 |     0.72 |      0.44 |
|    0 |      80 |      496 |       39 |        0 |       0 |     455 |     445 |  0.66 |     7.08 |     7.3  |     0.71 |      0.45 |
|    0 |      81 |      517 |       16 |        0 |       0 |     439 |     428 |  0.73 |     7.71 |     7.87 |     0.72 |      0.46 |
|    0 |      82 |      483 |        8 |        0 |       0 |     416 |     404 |  0.7  |     6.78 |     7.02 |     0.73 |      0.43 |
|    0 |      83 |      521 |       33 |        0 |       0 |     466 |     460 |  0.73 |     6.6  |     6.92 |     0.73 |      0.45 |
|    0 |      84 |      488 |       24 |        0 |       0 |     437 |     431 |  0.68 |     7.05 |     7.54 |     0.72 |      0.44 |
|    0 |      85 |      489 |       28 |        0 |       0 |     428 |     417 |  0.63 |     6.35 |     6.62 |     0.73 |      0.43 |
|    0 |      86 |      487 |       33 |        0 |       0 |     437 |     434 |  0.65 |     6.76 |     6.97 |     0.72 |      0.47 |
|    0 |      87 |      471 |       30 |        0 |       0 |     394 |     389 |  0.63 |     6.46 |     6.73 |     0.72 |      0.43 |
|    0 |      88 |      545 |       24 |        0 |       0 |     499 |     488 |  0.73 |     7.94 |     8.16 |     0.73 |      0.44 |
|    0 |      89 |      505 |       15 |        0 |       0 |     439 |     429 |  0.68 |     6.58 |     6.71 |     0.73 |      0.42 |
|    0 |      90 |      509 |       20 |        0 |       0 |     440 |     435 |  0.73 |     7.68 |     7.81 |     0.72 |      0.42 |
|    0 |      91 |      528 |        4 |        0 |       0 |     455 |     451 |  0.65 |     6.43 |     6.48 |     0.72 |      0.44 |
|    0 |      92 |      496 |       30 |        0 |       0 |     454 |     447 |  0.7  |     7.28 |     7.38 |     0.73 |      0.43 |
|    0 |      93 |      521 |       18 |        0 |       0 |     467 |     462 |  0.62 |     6.17 |     6.47 |     0.72 |      0.46 |
|    0 |      94 |      486 |       17 |        0 |       0 |     430 |     427 |  0.63 |     5.67 |     5.74 |     0.72 |      0.43 |
|    0 |      95 |      507 |       26 |        0 |       0 |     454 |     446 |  0.66 |     6.47 |     6.56 |     0.71 |      0.45 |
|    0 |      96 |      523 |       19 |        0 |       0 |     445 |     433 |  0.73 |     8.1  |     8.61 |     0.73 |      0.41 |
|    0 |      97 |      471 |       14 |        0 |       0 |     423 |     416 |  0.68 |     6.8  |     7    |     0.73 |      0.43 |
|    0 |      98 |      523 |       61 |        0 |       0 |     497 |     492 |  0.72 |     6.85 |     7.31 |     0.72 |      0.48 |
|    0 |      99 |      464 |       13 |        0 |       0 |     396 |     392 |  0.72 |     7.08 |     7.28 |     0.72 |      0.45 |
|    0 |     100 |      454 |       28 |        0 |       0 |     400 |     391 |  0.65 |     6.98 |     7.25 |     0.73 |      0.42 |
|    0 |     101 |      497 |       32 |        0 |       0 |     451 |     442 |  0.67 |     6.73 |     7.06 |     0.72 |      0.42 |
|    0 |     102 |      537 |       21 |        0 |       0 |     473 |     465 |  0.68 |     6.01 |     6.16 |     0.72 |      0.44 |
|    0 |     103 |      533 |       20 |        0 |       0 |     478 |     466 |  0.7  |     7.97 |     8.83 |     0.72 |      0.45 |
|    0 |     104 |      519 |       12 |        0 |       0 |     460 |     452 |  0.68 |     6.71 |     6.93 |     0.73 |      0.42 |
|    0 |     105 |      503 |       19 |        0 |       0 |     438 |     435 |  0.7  |     6.47 |     6.57 |     0.73 |      0.44 |
|    0 |     106 |      504 |       19 |        0 |       0 |     457 |     446 |  0.68 |     7.65 |     7.87 |     0.72 |      0.44 |
|    0 |     107 |      506 |       17 |        0 |       0 |     434 |     428 |  0.63 |     6.44 |     6.63 |     0.72 |      0.47 |
|    0 |     108 |      472 |       25 |        0 |       0 |     413 |     409 |  0.74 |     7.84 |     8.43 |     0.73 |      0.41 |
|    0 |     109 |      541 |       16 |        0 |       0 |     473 |     463 |  0.74 |     6.97 |     7.14 |     0.74 |      0.42 |
|    0 |     110 |      487 |       28 |        0 |       0 |     436 |     429 |  0.73 |     7.52 |     8.16 |     0.73 |      0.4  |
|    0 |     111 |      460 |       16 |        0 |       0 |     400 |     397 |  0.69 |     6.69 |     6.82 |     0.72 |      0.45 |
|    0 |     112 |      495 |       73 |        0 |       0 |     434 |     425 |  0.64 |     6.32 |     6.55 |     0.71 |      0.45 |
|    0 |     113 |      548 |       18 |        0 |       0 |     481 |     475 |  0.71 |     7.34 |     7.62 |     0.73 |      0.41 |
|    0 |     114 |      498 |       16 |        0 |       0 |     445 |     437 |  0.67 |     6.55 |     6.68 |     0.73 |      0.42 |
|    0 |     115 |      522 |       27 |        0 |       0 |     461 |     449 |  0.72 |     7.23 |     7.46 |     0.73 |      0.43 |
|    0 |     116 |      507 |       73 |        0 |       0 |     433 |     428 |  0.67 |     6.42 |     6.52 |     0.72 |      0.44 |
|    0 |     117 |      496 |       18 |        0 |       0 |     431 |     420 |  0.7  |     6.94 |     7.06 |     0.73 |      0.41 |
|    0 |     118 |      496 |       15 |        0 |       0 |     444 |     438 |  0.72 |     7.63 |     7.87 |     0.73 |      0.42 |
|    0 |     119 |      510 |       26 |        0 |       0 |     454 |     448 |  0.78 |     7.53 |     7.83 |     0.73 |      0.42 |
|    0 |     120 |      475 |        8 |        0 |       0 |     415 |     410 |  0.7  |     6.51 |     6.71 |     0.73 |      0.41 |
|    0 |     121 |      483 |       16 |        0 |       0 |     425 |     418 |  0.7  |     6.35 |     6.57 |     0.72 |      0.46 |
|    0 |     122 |      551 |       18 |        0 |       0 |     480 |     477 |  0.75 |     6.64 |     6.71 |     0.73 |      0.42 |
|    0 |     123 |      491 |       27 |        0 |       0 |     434 |     429 |  0.68 |     6.28 |     6.47 |     0.72 |      0.43 |
|    0 |     124 |      530 |       12 |        0 |       0 |     461 |     453 |  0.69 |     6.59 |     6.74 |     0.71 |      0.43 |
|    0 |     125 |      500 |       38 |        0 |       0 |     458 |     451 |  0.74 |     6.93 |     7.24 |     0.72 |      0.46 |
|    0 |     126 |      504 |       33 |        0 |       0 |     435 |     432 |  0.76 |     7.75 |     7.86 |     0.75 |      0.41 |
|    0 |     127 |      513 |       23 |        0 |       0 |     463 |     453 |  0.67 |     5.85 |     6.1  |     0.73 |      0.44 |
|    0 |     128 |      461 |       17 |        0 |       0 |     412 |     403 |  0.7  |     6.68 |     6.91 |     0.72 |      0.45 |
|    0 |     129 |      503 |        5 |        0 |       0 |     425 |     418 |  0.7  |     6.9  |     7.03 |     0.72 |      0.44 |
|    0 |     130 |      498 |       12 |        0 |       0 |     416 |     411 |  0.71 |     5.96 |     6.07 |     0.74 |      0.42 |
|    0 |     131 |      528 |       14 |        0 |       0 |     463 |     455 |  0.72 |     6.9  |     7.01 |     0.72 |      0.43 |
|    0 |     132 |      522 |       37 |        0 |       0 |     466 |     457 |  0.7  |     6.64 |     6.98 |     0.71 |      0.46 |
|    0 |     133 |      494 |       46 |        0 |       0 |     439 |     431 |  0.81 |     8.36 |     8.62 |     0.74 |      0.4  |
|    0 |     134 |      497 |       23 |        0 |       0 |     440 |     435 |  0.71 |     6.37 |     6.62 |     0.73 |      0.45 |
|    0 |     135 |      506 |       23 |        0 |       0 |     438 |     429 |  0.73 |     7.15 |     7.36 |     0.73 |      0.43 |
|    0 |     136 |      479 |       24 |        0 |       0 |     429 |     416 |  0.72 |     6.92 |     7.22 |     0.72 |      0.45 |
|    0 |     137 |      522 |       24 |        0 |       0 |     478 |     473 |  0.71 |     5.81 |     5.88 |     0.72 |      0.45 |
|    0 |     138 |      492 |       10 |        0 |       0 |     427 |     422 |  0.75 |     7.58 |     7.67 |     0.73 |      0.42 |
|    0 |     139 |      508 |       14 |        0 |       0 |     457 |     449 |  0.68 |     5.96 |     6.16 |     0.72 |      0.44 |
|    0 |     140 |      527 |       20 |        0 |       0 |     458 |     443 |  0.69 |     6.3  |     6.73 |     0.72 |      0.46 |
|    0 |     141 |      505 |       16 |        0 |       0 |     442 |     437 |  0.78 |     7.33 |     7.5  |     0.74 |      0.44 |
|    0 |     142 |      497 |       19 |        0 |       0 |     436 |     425 |  0.73 |     6.61 |     6.89 |     0.73 |      0.45 |
|    0 |     143 |      479 |       21 |        0 |       0 |     409 |     407 |  0.73 |     6.56 |     6.67 |     0.72 |      0.44 |
|    0 |     144 |      488 |        0 |        0 |       0 |     418 |     414 |  0.77 |     7.09 |     7.23 |     0.75 |      0.39 |
|    0 |     145 |      546 |        8 |        0 |       0 |     454 |     449 |  0.73 |     6.95 |     7.22 |     0.72 |      0.45 |
|    0 |     146 |      495 |       40 |        0 |       0 |     465 |     456 |  0.78 |     8.52 |    10    |     0.71 |      0.43 |
|    0 |     147 |      503 |       21 |        0 |       0 |     438 |     432 |  0.75 |     6.91 |     6.96 |     0.73 |      0.42 |
|    0 |     148 |      529 |       18 |        0 |       0 |     461 |     453 |  0.81 |     9.04 |    10.28 |     0.74 |      0.44 |
|    0 |     149 |      493 |       95 |        0 |       0 |     461 |     445 |  0.77 |     7.34 |     7.62 |     0.73 |      0.45 |
|    0 |     150 |      486 |       35 |        0 |       0 |     428 |     421 |  0.78 |     6.8  |     6.92 |     0.73 |      0.44 |
|    0 |     151 |      489 |       65 |        0 |       0 |     425 |     421 |  0.72 |     6.53 |     6.62 |     0.72 |      0.45 |
|    0 |     152 |      513 |        6 |        0 |       0 |     462 |     457 |  0.71 |     5.92 |     6.06 |     0.72 |      0.44 |
|    0 |     153 |      513 |       19 |        0 |       0 |     437 |     431 |  0.8  |     7.08 |     7.28 |     0.72 |      0.43 |
|    0 |     154 |      538 |       16 |        0 |       0 |     458 |     454 |  0.76 |     6.58 |     6.77 |     0.73 |      0.42 |
|    0 |     155 |      481 |       33 |        0 |       0 |     441 |     438 |  0.8  |     7.26 |     7.64 |     0.74 |      0.43 |
|    0 |     156 |      481 |       52 |        0 |       0 |     430 |     419 |  0.76 |     6.95 |     7.16 |     0.73 |      0.44 |
|    0 |     157 |      507 |       21 |        0 |       0 |     431 |     424 |  0.8  |     7.28 |     7.5  |     0.74 |      0.41 |
|    0 |     158 |      504 |       34 |        0 |       0 |     469 |     459 |  0.84 |     7.75 |     8.46 |     0.73 |      0.44 |
|    0 |     159 |      523 |       13 |        0 |       0 |     458 |     448 |  0.77 |     6.94 |     7.14 |     0.73 |      0.44 |
|    0 |     160 |      508 |       11 |        0 |       0 |     424 |     418 |  0.8  |     7.23 |     7.39 |     0.73 |      0.44 |
|    0 |     161 |      499 |       18 |        0 |       0 |     434 |     428 |  0.78 |     6.4  |     6.52 |     0.73 |      0.43 |
|    0 |     162 |      497 |       17 |        0 |       0 |     432 |     427 |  0.77 |     6.79 |     6.83 |     0.74 |      0.42 |
|    0 |     163 |      481 |       18 |        0 |       0 |     423 |     416 |  0.78 |     6.95 |     7.2  |     0.73 |      0.43 |
|    0 |     164 |      520 |       32 |        0 |       0 |     464 |     454 |  0.81 |     6.16 |     6.36 |     0.73 |      0.44 |
|    0 |     165 |      518 |        6 |        0 |       0 |     461 |     451 |  0.8  |     6.83 |     7.04 |     0.74 |      0.41 |
|    0 |     166 |      522 |        9 |        0 |       0 |     446 |     441 |  0.83 |     7.19 |     7.31 |     0.74 |      0.44 |
|    0 |     167 |      475 |       76 |        0 |       0 |     441 |     434 |  0.74 |     6.15 |     6.24 |     0.73 |      0.43 |
|    0 |     168 |      493 |        7 |        0 |       0 |     418 |     415 |  0.86 |     6.92 |     7    |     0.74 |      0.42 |
|    0 |     169 |      509 |       22 |        0 |       0 |     453 |     447 |  0.82 |     7.25 |     7.47 |     0.73 |      0.44 |
|    0 |     170 |      504 |       27 |        0 |       0 |     448 |     442 |  0.73 |     6.28 |     6.44 |     0.71 |      0.46 |
|    0 |     171 |      517 |       18 |        0 |       0 |     459 |     448 |  0.87 |     6.84 |     7.28 |     0.74 |      0.41 |
|    0 |     172 |      500 |       17 |        0 |       0 |     447 |     439 |  0.85 |     7.62 |     7.84 |     0.75 |      0.42 |
|    0 |     173 |      506 |       31 |        0 |       0 |     454 |     451 |  0.83 |     6.41 |     6.63 |     0.73 |      0.44 |
|    0 |     174 |      480 |       11 |        0 |       0 |     417 |     408 |  0.88 |     7.61 |     7.88 |     0.75 |      0.4  |
|    0 |     175 |      510 |       20 |        0 |       0 |     438 |     432 |  0.8  |     6.46 |     6.63 |     0.73 |      0.42 |
|    0 |     176 |      503 |       33 |        0 |       0 |     453 |     446 |  0.91 |     7.93 |     8.66 |     0.74 |      0.4  |
|    0 |     177 |      498 |       24 |        0 |       0 |     439 |     430 |  0.79 |     6.27 |     6.5  |     0.74 |      0.44 |
|    0 |     178 |      506 |       11 |        0 |       0 |     445 |     437 |  0.83 |     7.13 |     7.19 |     0.74 |      0.42 |
|    0 |     179 |      507 |       15 |        0 |       0 |     445 |     441 |  0.85 |     7.54 |     7.68 |     0.73 |      0.43 |
|    0 |     180 |      496 |        3 |        0 |       0 |     425 |     424 |  0.88 |     6.84 |     6.81 |     0.74 |      0.43 |
|    0 |     181 |      503 |       16 |        0 |       0 |     442 |     437 |  0.91 |     7.05 |     7.28 |     0.74 |      0.4  |
|    0 |     182 |      527 |       41 |        0 |       0 |     465 |     462 |  0.85 |     7.01 |     7.08 |     0.74 |      0.41 |
|    0 |     183 |      487 |        6 |        0 |       0 |     424 |     417 |  0.8  |     6.4  |     6.5  |     0.74 |      0.43 |
|    0 |     184 |      498 |       10 |        0 |       0 |     432 |     426 |  0.89 |     6.76 |     6.92 |     0.75 |      0.41 |
|    0 |     185 |      519 |       55 |        0 |       0 |     470 |     466 |  0.92 |     6.7  |     7.6  |     0.74 |      0.42 |
|    0 |     186 |      480 |       15 |        0 |       0 |     408 |     403 |  0.91 |     6.88 |     7.16 |     0.73 |      0.43 |
|    0 |     187 |      531 |        3 |        0 |       0 |     458 |     454 |  0.81 |     5.92 |     5.99 |     0.74 |      0.41 |
|    0 |     188 |      461 |       34 |        0 |       0 |     407 |     402 |  0.88 |     6.51 |     6.7  |     0.73 |      0.42 |
|    0 |     189 |      526 |       24 |        0 |       0 |     458 |     450 |  0.94 |     7.74 |     8.02 |     0.75 |      0.41 |
|    0 |     190 |      509 |       23 |        0 |       0 |     434 |     430 |  0.94 |     8.2  |     8.51 |     0.75 |      0.42 |
|    0 |     191 |      482 |       35 |        0 |       0 |     454 |     443 |  0.95 |     6.7  |     6.9  |     0.74 |      0.42 |
|    0 |     192 |      542 |       25 |        0 |       0 |     472 |     465 |  0.94 |     7.14 |     7.58 |     0.75 |      0.43 |
|    0 |     193 |      481 |       30 |        0 |       0 |     435 |     426 |  0.9  |     6.37 |     6.87 |     0.75 |      0.41 |
|    0 |     194 |      495 |       24 |        0 |       0 |     435 |     425 |  0.89 |     6.84 |     7.13 |     0.75 |      0.41 |
|    0 |     195 |      518 |        0 |        0 |       0 |     444 |     440 |  1    |     7.9  |     7.99 |     0.76 |      0.42 |
|    0 |     196 |      516 |        3 |        0 |       0 |     452 |     447 |  1.01 |     8.39 |     8.49 |     0.75 |      0.41 |
|    0 |     197 |      491 |        6 |        0 |       0 |     427 |     421 |  1.03 |     8.3  |     8.49 |     0.75 |      0.42 |
|    0 |     198 |      498 |       17 |        0 |       0 |     428 |     421 |  0.86 |     6.51 |     6.8  |     0.74 |      0.45 |
|    0 |     199 |      515 |       43 |        0 |       0 |     460 |     454 |  0.92 |     6.76 |     6.84 |     0.74 |      0.43 |
|    0 |     200 |      490 |       21 |        0 |       0 |     431 |     423 |  0.97 |     7.64 |     7.88 |     0.75 |      0.41 |
|    0 |     201 |      497 |       35 |        0 |       0 |     442 |     435 |  0.93 |     6.07 |     6.39 |     0.75 |      0.41 |
|    0 |     202 |      525 |       24 |        0 |       0 |     479 |     472 |  1.02 |     7.42 |     7.71 |     0.76 |      0.4  |
|    0 |     203 |      496 |       34 |        0 |       0 |     428 |     422 |  1.04 |     7.73 |     8.06 |     0.75 |      0.4  |
|    0 |     204 |      509 |       31 |        0 |       0 |     454 |     445 |  0.99 |     7.33 |     7.68 |     0.75 |      0.43 |
|    0 |     205 |      482 |        3 |        0 |       0 |     417 |     414 |  0.98 |     6.91 |     6.97 |     0.76 |      0.39 |
|    0 |     206 |      520 |       35 |        0 |       0 |     477 |     469 |  0.95 |     6.31 |     6.52 |     0.76 |      0.41 |
|    0 |     207 |      482 |        6 |        0 |       0 |     424 |     420 |  1.02 |     7.62 |     7.64 |     0.76 |      0.39 |
|    0 |     208 |      516 |       11 |        0 |       0 |     451 |     444 |  1.04 |     7.4  |     7.41 |     0.76 |      0.42 |
|    0 |     209 |      499 |       18 |        0 |       0 |     433 |     430 |  1.01 |     7.52 |     7.83 |     0.76 |      0.41 |
|    0 |     210 |      517 |        0 |        0 |       0 |     437 |     432 |  1.17 |     8.62 |     8.81 |     0.78 |      0.4  |
|    0 |     211 |      497 |       16 |        0 |       0 |     440 |     434 |  1.04 |     6.47 |     6.72 |     0.76 |      0.42 |
|    0 |     212 |      507 |       24 |        0 |       0 |     457 |     452 |  1.02 |     6.59 |     7    |     0.76 |      0.41 |
|    0 |     213 |      511 |       16 |        0 |       0 |     444 |     438 |  1.13 |     7.65 |     7.79 |     0.77 |      0.42 |
|    0 |     214 |      485 |        6 |        0 |       0 |     413 |     406 |  1    |     6.28 |     6.36 |     0.76 |      0.43 |
|    0 |     215 |      493 |       24 |        0 |       0 |     444 |     437 |  1.15 |     7.6  |     7.87 |     0.76 |      0.4  |
|    0 |     216 |      519 |       11 |        0 |       0 |     453 |     444 |  1.07 |     7.12 |     7.26 |     0.77 |      0.43 |
|    0 |     217 |      505 |       24 |        0 |       0 |     459 |     448 |  1.12 |     7.07 |     7.53 |     0.76 |      0.43 |
|    0 |     218 |      488 |       34 |        0 |       0 |     439 |     433 |  1.11 |     6.83 |     7.55 |     0.76 |      0.41 |
|    0 |     219 |      524 |       37 |        0 |       0 |     486 |     480 |  1.14 |     6.16 |     6.3  |     0.77 |      0.4  |
|    0 |     220 |      497 |       20 |        0 |       0 |     422 |     412 |  1.14 |     7.43 |     7.7  |     0.77 |      0.4  |
|    0 |     221 |      515 |       28 |        0 |       0 |     471 |     461 |  1.16 |     6.81 |     7.12 |     0.77 |      0.4  |
|    0 |     222 |      489 |       20 |        0 |       0 |     421 |     416 |  1.22 |     8.36 |     8.57 |     0.77 |      0.4  |
|    0 |     223 |      505 |       17 |        0 |       0 |     455 |     451 |  1.18 |     7.57 |     7.75 |     0.78 |      0.42 |
|    0 |     224 |      507 |       32 |        0 |       0 |     440 |     433 |  1.2  |     7.43 |     7.85 |     0.77 |      0.41 |
|    0 |     225 |      501 |       10 |        0 |       0 |     453 |     449 |  1.28 |     6.8  |     6.91 |     0.78 |      0.4  |
|    0 |     226 |      500 |        7 |        0 |       0 |     417 |     413 |  1.14 |     6.28 |     6.42 |     0.78 |      0.41 |
|    0 |     227 |      487 |       27 |        0 |       0 |     429 |     423 |  1.28 |     7.61 |     8.04 |     0.78 |      0.39 |
|    0 |     228 |      522 |       12 |        0 |       0 |     460 |     454 |  1.22 |     8.48 |     8.67 |     0.78 |      0.39 |
|    0 |     229 |      503 |       11 |        0 |       0 |     457 |     448 |  1.27 |     8.12 |     8.26 |     0.78 |      0.41 |
|    0 |     230 |      502 |       34 |        0 |       0 |     466 |     458 |  1.28 |     7.11 |     7.33 |     0.78 |      0.4  |
|    0 |     231 |      512 |       10 |        0 |       0 |     432 |     426 |  1.31 |     7.51 |     7.65 |     0.79 |      0.41 |
|    0 |     232 |      497 |        0 |        0 |       0 |     418 |     411 |  1.3  |     7.57 |     7.68 |     0.79 |      0.4  |
|    0 |     233 |      499 |       30 |        0 |       0 |     451 |     442 |  1.3  |     7.15 |     7.54 |     0.78 |      0.42 |
|    0 |     234 |      504 |       17 |        0 |       0 |     443 |     440 |  1.34 |     8.23 |     8.91 |     0.79 |      0.4  |
|    0 |     235 |      529 |       26 |        0 |       0 |     457 |     448 |  1.33 |     7.01 |     7.23 |     0.79 |      0.41 |
|    0 |     236 |      493 |       18 |        0 |       0 |     434 |     431 |  1.26 |     6.47 |     6.48 |     0.78 |      0.42 |
|    0 |     237 |      489 |       15 |        0 |       0 |     436 |     431 |  1.44 |     9.47 |     9.66 |     0.79 |      0.41 |
|    0 |     238 |      490 |       25 |        0 |       0 |     432 |     425 |  1.46 |     9.05 |     9.61 |     0.8  |      0.39 |
|    0 |     239 |      497 |       28 |        0 |       0 |     450 |     440 |  1.3  |     5.78 |     6.06 |     0.79 |      0.39 |
|    0 |     240 |      530 |       24 |        0 |       0 |     466 |     457 |  1.33 |     8.16 |     8.35 |     0.79 |      0.39 |
|    0 |     241 |      520 |       21 |        0 |       0 |     459 |     448 |  1.49 |     8.91 |     9.23 |     0.79 |      0.4  |
|    0 |     242 |      475 |       41 |        0 |       0 |     438 |     429 |  1.32 |     7.55 |     7.84 |     0.78 |      0.41 |
|    0 |     243 |      500 |       24 |        0 |       0 |     432 |     428 |  1.48 |     8.65 |     8.74 |     0.8  |      0.38 |
|    0 |     244 |      529 |       11 |        0 |       0 |     453 |     446 |  1.37 |     7.44 |     7.59 |     0.79 |      0.41 |
|    0 |     245 |      481 |       30 |        0 |       0 |     444 |     437 |  1.43 |     6.49 |     6.83 |     0.8  |      0.39 |
|    0 |     246 |      530 |       18 |        0 |       0 |     447 |     442 |  1.42 |     7.11 |     7.34 |     0.79 |      0.4  |
|    0 |     247 |      490 |       21 |        0 |       0 |     418 |     415 |  1.46 |     8.53 |     9.42 |     0.79 |      0.4  |
|    0 |     248 |      505 |       34 |        0 |       0 |     453 |     447 |  1.36 |     7.63 |     7.88 |     0.79 |      0.4  |
|    0 |     249 |      518 |       20 |        0 |       0 |     446 |     438 |  1.54 |     8.79 |     9.14 |     0.8  |      0.38 |
|    0 |     250 |      501 |       27 |        0 |       0 |     439 |     433 |  1.39 |     8.25 |     8.34 |     0.79 |      0.4  |
|    0 |     251 |      507 |       16 |        0 |       0 |     447 |     436 |  1.42 |     7.74 |     8.06 |     0.8  |      0.41 |
|    0 |     252 |      498 |        4 |        0 |       0 |     420 |     413 |  1.39 |     7    |     7.09 |     0.8  |      0.38 |
|    0 |     253 |      487 |       14 |        0 |       0 |     423 |     417 |  1.39 |     7.09 |     7.4  |     0.79 |      0.38 |
|    0 |     254 |      514 |       43 |        0 |       0 |     465 |     459 |  1.46 |     7.83 |     7.99 |     0.79 |      0.39 |
|    0 |     255 |      475 |       11 |        0 |       0 |     414 |     409 |  1.37 |     7.03 |     7.24 |     0.79 |      0.39 |
|    0 |     256 |      533 |       29 |        0 |       0 |     457 |     450 |  1.39 |     7.66 |     8.2  |     0.79 |      0.38 |
|    0 |     257 |      511 |       27 |        0 |       0 |     450 |     445 |  1.47 |     9.1  |     9.71 |     0.79 |      0.38 |
|    0 |     258 |      498 |       19 |        0 |       0 |     439 |     433 |  1.27 |     6.16 |     6.27 |     0.79 |      0.39 |
|    0 |     259 |      536 |       43 |        0 |       0 |     472 |     467 |  1.43 |     8.18 |     8.48 |     0.79 |      0.4  |
|    0 |     260 |      488 |       12 |        0 |       0 |     425 |     420 |  1.33 |     7.4  |     7.55 |     0.78 |      0.41 |
|    0 |     261 |      482 |        7 |        0 |       0 |     424 |     421 |  1.37 |     7.68 |     8.07 |     0.79 |      0.39 |
|    0 |     262 |      510 |       17 |        0 |       0 |     441 |     427 |  1.3  |     6.45 |     6.65 |     0.79 |      0.4  |
|    0 |     263 |      508 |       49 |        0 |       0 |     456 |     447 |  1.28 |     6.72 |     6.98 |     0.78 |      0.4  |
|    0 |     264 |      482 |       31 |        0 |       0 |     405 |     401 |  1.32 |     8.84 |     9    |     0.79 |      0.4  |
|    0 |     265 |      507 |        8 |        0 |       0 |     449 |     442 |  1.14 |     7.51 |     7.62 |     0.78 |      0.4  |
|    0 |     266 |      504 |       25 |        0 |       0 |     451 |     447 |  1.39 |     7.47 |     7.77 |     0.79 |      0.39 |
|    0 |     267 |      508 |       26 |        0 |       0 |     442 |     439 |  1.32 |     7.72 |     7.81 |     0.79 |      0.37 |
|    0 |     268 |      549 |       30 |        0 |       0 |     498 |     491 |  1.29 |     9.24 |     9.67 |     0.77 |      0.39 |
|    0 |     269 |      487 |       32 |        0 |       0 |     431 |     424 |  1.29 |     8.09 |     8.72 |     0.78 |      0.41 |
|    0 |     270 |      512 |       14 |        0 |       0 |     440 |     437 |  1.31 |     7.86 |     7.97 |     0.79 |      0.4  |
|    0 |     271 |      513 |       10 |        0 |       0 |     449 |     444 |  1.08 |     6.58 |     6.65 |     0.78 |      0.4  |
|    0 |     272 |      494 |       43 |        0 |       0 |     447 |     435 |  1.17 |     8.03 |     8.31 |     0.78 |      0.4  |
|    0 |     273 |      470 |       13 |        0 |       0 |     403 |     398 |  1.14 |     7.67 |     7.82 |     0.77 |      0.41 |
|    0 |     274 |      535 |       16 |        0 |       0 |     469 |     461 |  1.26 |     8.93 |     9.3  |     0.78 |      0.41 |
|    0 |     275 |      479 |       30 |        0 |       0 |     413 |     408 |  1.23 |     8.97 |     9.14 |     0.78 |      0.39 |
|    0 |     276 |      507 |       14 |        0 |       0 |     436 |     430 |  1.12 |     7.52 |     7.61 |     0.76 |      0.39 |
|    0 |     277 |      520 |        3 |        0 |       0 |     454 |     449 |  1.1  |     7.49 |     7.57 |     0.77 |      0.41 |
|    0 |     278 |      488 |       19 |        0 |       0 |     405 |     396 |  1.07 |     7.61 |     7.71 |     0.77 |      0.42 |
|    0 |     279 |      537 |        9 |        0 |       0 |     472 |     464 |  1.12 |     7.42 |     7.84 |     0.76 |      0.4  |
|    0 |     280 |      502 |        3 |        0 |       0 |     435 |     431 |  1.24 |     8.78 |     8.89 |     0.78 |      0.39 |
|    0 |     281 |      481 |       17 |        0 |       0 |     442 |     438 |  1.01 |     7.04 |     7.1  |     0.76 |      0.42 |
|    0 |     282 |      510 |       12 |        0 |       0 |     444 |     439 |  1.03 |     7.67 |     8.02 |     0.76 |      0.41 |
|    0 |     283 |      505 |       29 |        0 |       0 |     428 |     422 |  1.06 |     7.11 |     7.18 |     0.76 |      0.41 |
|    0 |     284 |      512 |       32 |        0 |       0 |     481 |     475 |  1.04 |     6.32 |     6.55 |     0.75 |      0.42 |
|    0 |     285 |      493 |       29 |        0 |       0 |     436 |     427 |  1.1  |     7.2  |     7.47 |     0.77 |      0.4  |
|    0 |     286 |      500 |       19 |        0 |       0 |     439 |     429 |  1.02 |     6.4  |     6.6  |     0.76 |      0.42 |
|    0 |     287 |      518 |       23 |        0 |       0 |     456 |     450 |  0.97 |     7.54 |     7.57 |     0.75 |      0.43 |
|    0 |     288 |      488 |       35 |        0 |       0 |     436 |     422 |  0.95 |     6.29 |     6.54 |     0.75 |      0.43 |
|    0 |     289 |      518 |       21 |        0 |       0 |     453 |     450 |  0.98 |     7.59 |     7.67 |     0.75 |      0.42 |
|    0 |     290 |      483 |       46 |        0 |       0 |     448 |     439 |  1.04 |     7.37 |     7.78 |     0.76 |      0.41 |
|    0 |     291 |      531 |       20 |        0 |       0 |     472 |     468 |  1.05 |     8.12 |     8.28 |     0.76 |      0.4  |
|    0 |     292 |      488 |       22 |        0 |       0 |     421 |     414 |  0.94 |     7.81 |     8.08 |     0.74 |      0.44 |
|    0 |     293 |      510 |       33 |        0 |       0 |     447 |     445 |  0.99 |     7.24 |     7.34 |     0.75 |      0.4  |
|    0 |     294 |      497 |       13 |        0 |       0 |     428 |     420 |  0.96 |     6.69 |     6.89 |     0.76 |      0.41 |
|    0 |     295 |      507 |       15 |        0 |       0 |     437 |     433 |  0.98 |     7.2  |     7.33 |     0.75 |      0.42 |
|    0 |     296 |      478 |       30 |        0 |       0 |     429 |     424 |  1    |     7.87 |     8.44 |     0.75 |      0.41 |
|    0 |     297 |      531 |        3 |        0 |       0 |     439 |     434 |  0.92 |     6.7  |     6.77 |     0.76 |      0.4  |
|    0 |     298 |      502 |       32 |        0 |       0 |     428 |     424 |  1    |     7.93 |     8.08 |     0.76 |      0.39 |
|    0 |     299 |      509 |       39 |        0 |       0 |     468 |     459 |  0.94 |     8.3  |     8.62 |     0.74 |      0.42 |
|    0 |     300 |      468 |       17 |        0 |       0 |     407 |     401 |  0.9  |     8.43 |     8.65 |     0.75 |      0.4  |
|    0 |     301 |      539 |       13 |        0 |       0 |     481 |     476 |  0.94 |     7.8  |     7.9  |     0.75 |      0.4  |
|    0 |     302 |      504 |       45 |        0 |       0 |     450 |     442 |  0.86 |     6.51 |     7.25 |     0.74 |      0.42 |
|    0 |     303 |      522 |       36 |        0 |       0 |     469 |     462 |  0.98 |     8.09 |     8.6  |     0.74 |      0.42 |
|    0 |     304 |      469 |       23 |        0 |       0 |     408 |     403 |  0.86 |     6.8  |     6.99 |     0.73 |      0.42 |
|    0 |     305 |      532 |       12 |        0 |       0 |     454 |     447 |  0.94 |     6.56 |     6.71 |     0.74 |      0.44 |
|    0 |     306 |      486 |       30 |        0 |       0 |     439 |     429 |  0.87 |     6.46 |     6.82 |     0.74 |      0.44 |
|    0 |     307 |      502 |        0 |        0 |       0 |     439 |     436 |  0.89 |     6.97 |     7.07 |     0.74 |      0.4  |
|    0 |     308 |      488 |       32 |        0 |       0 |     440 |     434 |  0.92 |     7.5  |     7.89 |     0.74 |      0.42 |
|    0 |     309 |      537 |       15 |        0 |       0 |     465 |     456 |  0.84 |     7.03 |     7.45 |     0.73 |      0.43 |
|    0 |     310 |      502 |       20 |        0 |       0 |     440 |     430 |  0.87 |     6.76 |     7.04 |     0.74 |      0.42 |
|    0 |     311 |      473 |       39 |        0 |       0 |     420 |     412 |  0.89 |     7.99 |     8.33 |     0.73 |      0.44 |
|    0 |     312 |      506 |       11 |        0 |       0 |     452 |     447 |  0.87 |     7.12 |     7.17 |     0.74 |      0.4  |
|    0 |     313 |      523 |        6 |        0 |       0 |     436 |     432 |  0.92 |     8.04 |     8.16 |     0.74 |      0.42 |
|    0 |     314 |      499 |       34 |        0 |       0 |     454 |     447 |  0.86 |     7.31 |     7.66 |     0.74 |      0.42 |
|    0 |     315 |      522 |        7 |        0 |       0 |     445 |     440 |  0.78 |     5.99 |     6.03 |     0.72 |      0.43 |
|    0 |     316 |      508 |        3 |        0 |       0 |     440 |     434 |  0.79 |     7.82 |     8.01 |     0.73 |      0.42 |
|    0 |     317 |      486 |       27 |        0 |       0 |     438 |     436 |  0.85 |     6.81 |     7.07 |     0.73 |      0.42 |
|    0 |     318 |      465 |       27 |        0 |       0 |     421 |     409 |  0.9  |     8.3  |     8.69 |     0.73 |      0.43 |
|    0 |     319 |      542 |       29 |        0 |       0 |     469 |     465 |  0.83 |     7.14 |     7.16 |     0.73 |      0.41 |
|    0 |     320 |      484 |       40 |        0 |       0 |     457 |     447 |  0.79 |     6.32 |     6.43 |     0.72 |      0.43 |
|    0 |     321 |      514 |       17 |        0 |       0 |     446 |     441 |  0.83 |     6.84 |     6.9  |     0.73 |      0.44 |
|    0 |     322 |      497 |       13 |        0 |       0 |     427 |     421 |  0.79 |     7.13 |     7.2  |     0.73 |      0.45 |
|    0 |     323 |      529 |       15 |        0 |       0 |     451 |     447 |  0.72 |     5.82 |     6.01 |     0.71 |      0.48 |
|    0 |     324 |      479 |       26 |        0 |       0 |     422 |     417 |  0.89 |     8.63 |     8.79 |     0.74 |      0.42 |
|    0 |     325 |      517 |       49 |        0 |       0 |     460 |     455 |  0.89 |     7.94 |     8.25 |     0.74 |      0.41 |
|    0 |     326 |      494 |       27 |        0 |       0 |     446 |     440 |  0.82 |     7.37 |     7.92 |     0.72 |      0.46 |
|    0 |     327 |      482 |       30 |        0 |       0 |     428 |     417 |  0.82 |     7.4  |     7.66 |     0.73 |      0.45 |
|    0 |     328 |      529 |       14 |        0 |       0 |     464 |     457 |  0.75 |     7.03 |     7.06 |     0.72 |      0.42 |
|    0 |     329 |      511 |       18 |        0 |       0 |     440 |     438 |  0.77 |     6.6  |     6.82 |     0.71 |      0.45 |
|    0 |     330 |      529 |        0 |        0 |       0 |     455 |     449 |  0.83 |     7.21 |     7.35 |     0.73 |      0.45 |
|    0 |     331 |      488 |       28 |        0 |       0 |     433 |     424 |  0.81 |     7.49 |     8.1  |     0.72 |      0.45 |
|    0 |     332 |      485 |       29 |        0 |       0 |     430 |     424 |  0.75 |     5.98 |     6.13 |     0.72 |      0.44 |
|    0 |     333 |      492 |       21 |        0 |       0 |     439 |     433 |  0.76 |     6.72 |     7.04 |     0.72 |      0.45 |
|    0 |     334 |      512 |       11 |        0 |       0 |     461 |     453 |  0.8  |     7.37 |     7.45 |     0.72 |      0.45 |
|    0 |     335 |      495 |       19 |        0 |       0 |     425 |     422 |  0.74 |     6.88 |     7.53 |     0.71 |      0.44 |
|    0 |     336 |      526 |       17 |        0 |       0 |     458 |     451 |  0.68 |     5.64 |     5.74 |     0.71 |      0.47 |
|    0 |     337 |      515 |       17 |        0 |       0 |     440 |     432 |  0.8  |     7.39 |     7.62 |     0.72 |      0.46 |
|    0 |     338 |      494 |       12 |        0 |       0 |     436 |     432 |  0.76 |     6.64 |     6.74 |     0.72 |      0.41 |
|    0 |     339 |      518 |       18 |        0 |       0 |     435 |     428 |  0.81 |     7.52 |     7.68 |     0.73 |      0.45 |
|    0 |     340 |      482 |       21 |        0 |       0 |     428 |     421 |  0.8  |     7.19 |     7.74 |     0.72 |      0.43 |
|    0 |     341 |      513 |       34 |        0 |       0 |     460 |     457 |  0.8  |     7.02 |     7.6  |     0.73 |      0.41 |
|    0 |     342 |      487 |       16 |        0 |       0 |     437 |     431 |  0.7  |     5.77 |     5.91 |     0.71 |      0.48 |
|    0 |     343 |      529 |        3 |        0 |       0 |     450 |     443 |  0.71 |     6.1  |     6.18 |     0.72 |      0.42 |
|    0 |     344 |      485 |       41 |        0 |       0 |     452 |     440 |  0.71 |     5.84 |     6.1  |     0.71 |      0.46 |
|    0 |     345 |      515 |       21 |        0 |       0 |     462 |     454 |  0.8  |     7.15 |     7.46 |     0.72 |      0.44 |
|    0 |     346 |      486 |        6 |        0 |       0 |     410 |     399 |  0.71 |     6.33 |     6.56 |     0.71 |      0.47 |
|    0 |     347 |      525 |       42 |        0 |       0 |     477 |     464 |  0.72 |     6.07 |     6.37 |     0.71 |      0.45 |
|    0 |     348 |      486 |       18 |        0 |       0 |     429 |     424 |  0.77 |     7.38 |     7.53 |     0.73 |      0.42 |
|    0 |     349 |      506 |       14 |        0 |       0 |     430 |     426 |  0.75 |     6.92 |     7.06 |     0.72 |      0.42 |
|    0 |     350 |      508 |       33 |        0 |       0 |     422 |     414 |  0.68 |     6.64 |     6.77 |     0.71 |      0.47 |
|    0 |     351 |      520 |       20 |        0 |       0 |     467 |     461 |  0.79 |     6.87 |     7.03 |     0.72 |      0.44 |
|    0 |     352 |      500 |       22 |        0 |       0 |     437 |     429 |  0.77 |     7.06 |     7.31 |     0.72 |      0.44 |
|    0 |     353 |      468 |       29 |        0 |       0 |     422 |     413 |  0.68 |     6.11 |     6.27 |     0.71 |      0.45 |
|    0 |     354 |      513 |       11 |        0 |       0 |     455 |     448 |  0.75 |     7.57 |     7.68 |     0.73 |      0.45 |
|    0 |     355 |      526 |       13 |        0 |       0 |     460 |     450 |  0.65 |     5.51 |     5.65 |     0.71 |      0.48 |
|    0 |     356 |      507 |       22 |        0 |       0 |     453 |     451 |  0.71 |     6.62 |     6.81 |     0.71 |      0.45 |
|    0 |     357 |      497 |       12 |        0 |       0 |     419 |     417 |  0.75 |     7.3  |     7.35 |     0.73 |      0.43 |
|    0 |     358 |      539 |       12 |        0 |       0 |     471 |     464 |  0.67 |     5.88 |     6.07 |     0.71 |      0.45 |
|    0 |     359 |      459 |       39 |        0 |       0 |     430 |     425 |  0.72 |     6.17 |     6.6  |     0.7  |      0.49 |
|    0 |     360 |      487 |       23 |        0 |       0 |     426 |     422 |  0.76 |     7.72 |     7.85 |     0.73 |      0.42 |
|    0 |     361 |      535 |       31 |        0 |       0 |     480 |     467 |  0.79 |     8.6  |     9.82 |     0.72 |      0.44 |
|    0 |     362 |      479 |       34 |        0 |       0 |     419 |     418 |  0.74 |     6.39 |     6.26 |     0.72 |      0.45 |
|    0 |     363 |      486 |       45 |        0 |       0 |     436 |     426 |  0.68 |     6.66 |     6.88 |     0.7  |      0.47 |
|    0 |     364 |      510 |        0 |        0 |       0 |     442 |     440 |  0.67 |     5.98 |     5.99 |     0.72 |      0.43 |
|    0 |     365 |      503 |       27 |        0 |       0 |     460 |     450 |  0.72 |     7.45 |     7.66 |     0.73 |      0.43 |
|    0 |     366 |      514 |        8 |        0 |       0 |     426 |     418 |  0.68 |     6.32 |     6.46 |     0.71 |      0.42 |
|    0 |     367 |      540 |       13 |        0 |       0 |     472 |     469 |  0.75 |     7.76 |     7.91 |     0.71 |      0.45 |
|    0 |     368 |      529 |       36 |        0 |       0 |     493 |     487 |  0.71 |     8.01 |     9.48 |     0.71 |      0.43 |
|    0 |     369 |      516 |       29 |        0 |       0 |     448 |     440 |  0.65 |     6.41 |     6.59 |     0.7  |      0.46 |
|    0 |     370 |      468 |       18 |        0 |       0 |     421 |     415 |  0.7  |     7.39 |     7.53 |     0.71 |      0.48 |
|    0 |     371 |      453 |       18 |        0 |       0 |     407 |     403 |  0.69 |     5.76 |     5.81 |     0.71 |      0.47 |
|    0 |     372 |      519 |       21 |        0 |       0 |     453 |     446 |  0.77 |     7.64 |     7.81 |     0.73 |      0.43 |
|    0 |     373 |      498 |       17 |        0 |       0 |     449 |     440 |  0.72 |     6.95 |     7.2  |     0.72 |      0.41 |
|    0 |     374 |      500 |       59 |        0 |       0 |     445 |     442 |  0.75 |     8.09 |     8.01 |     0.71 |      0.46 |
|    0 |     375 |      498 |        6 |        0 |       0 |     437 |     431 |  0.68 |     6.25 |     6.32 |     0.71 |      0.44 |
|    0 |     376 |      499 |       33 |        0 |       0 |     440 |     431 |  0.69 |     6.06 |     6.25 |     0.71 |      0.46 |
|    0 |     377 |      515 |       34 |        0 |       0 |     466 |     456 |  0.6  |     5.5  |     5.79 |     0.7  |      0.47 |
|    0 |     378 |      508 |       26 |        0 |       0 |     447 |     437 |  0.68 |     6.2  |     6.46 |     0.7  |      0.45 |
|    0 |     379 |      509 |       12 |        0 |       0 |     426 |     423 |  0.69 |     5.63 |     5.73 |     0.71 |      0.46 |
|    0 |     380 |      529 |       30 |        0 |       0 |     472 |     468 |  0.69 |     6.43 |     6.47 |     0.71 |      0.43 |
|    0 |     381 |      521 |       45 |        0 |       0 |     448 |     441 |  0.7  |     7.22 |     7.32 |     0.71 |      0.47 |
|    0 |     382 |      511 |       42 |        0 |       0 |     438 |     429 |  0.75 |     7.07 |     7.32 |     0.72 |      0.44 |
|    0 |     383 |      474 |       50 |        0 |       0 |     447 |     441 |  0.65 |     6.39 |     6.65 |     0.7  |      0.43 |
|    0 |     384 |      498 |       11 |        0 |       0 |     428 |     415 |  0.65 |     6    |     6.24 |     0.71 |      0.43 |
|    0 |     385 |      495 |       19 |        0 |       0 |     451 |     445 |  0.65 |     6.18 |     6.39 |     0.7  |      0.47 |
|    0 |     386 |      489 |       26 |        0 |       0 |     446 |     438 |  0.68 |     7.42 |     7.69 |     0.7  |      0.49 |
|    0 |     387 |      518 |       26 |        0 |       0 |     478 |     469 |  0.75 |     6.98 |     7.4  |     0.72 |      0.45 |
|    0 |     388 |      493 |       20 |        0 |       0 |     443 |     435 |  0.69 |     7.01 |     7.05 |     0.71 |      0.44 |
|    0 |     389 |      513 |       51 |        0 |       0 |     458 |     453 |  0.76 |     8.11 |     8.97 |     0.7  |      0.47 |
|    0 |     390 |      483 |       18 |        0 |       0 |     434 |     426 |  0.7  |     6.63 |     6.86 |     0.71 |      0.46 |
|    0 |     391 |      522 |       13 |        0 |       0 |     447 |     439 |  0.69 |     6.67 |     6.73 |     0.71 |      0.43 |
|    0 |     392 |      513 |       33 |        0 |       0 |     460 |     451 |  0.7  |     6.5  |     7.12 |     0.7  |      0.48 |
|    0 |     393 |      486 |       37 |        0 |       0 |     424 |     421 |  0.68 |     6.57 |     6.99 |     0.71 |      0.46 |
|    0 |     394 |      536 |       20 |        0 |       0 |     479 |     471 |  0.63 |     5.95 |     6.06 |     0.7  |      0.46 |
|    0 |     395 |      489 |       25 |        0 |       0 |     437 |     433 |  0.67 |     6.38 |     6.44 |     0.71 |      0.46 |
|    0 |     396 |      490 |       20 |        0 |       0 |     427 |     419 |  0.62 |     5.95 |     5.87 |     0.71 |      0.46 |
|    0 |     397 |      520 |       12 |        0 |       0 |     463 |     460 |  0.65 |     5.88 |     5.95 |     0.7  |      0.44 |
|    0 |     398 |      490 |       21 |        0 |       0 |     420 |     417 |  0.69 |     6.29 |     6.69 |     0.72 |      0.45 |
|    0 |     399 |      501 |       13 |        0 |       0 |     433 |     430 |  0.67 |     6.74 |     7.03 |     0.72 |      0.47 |
|    0 |     400 |      517 |       13 |        0 |       0 |     445 |     442 |  0.72 |     7.05 |     7.09 |     0.72 |      0.44 |
|    0 |     401 |      494 |       25 |        0 |       0 |     445 |     436 |  0.71 |     6.69 |     7.08 |     0.71 |      0.44 |
|    0 |     402 |      503 |        0 |        0 |       0 |     424 |     418 |  0.7  |     7.01 |     7.12 |     0.72 |      0.44 |
|    0 |     403 |      502 |       10 |        0 |       0 |     442 |     435 |  0.65 |     6.19 |     6.3  |     0.71 |      0.46 |
|    0 |     404 |      502 |       23 |        0 |       0 |     454 |     444 |  0.71 |     7.56 |     7.87 |     0.72 |      0.43 |
|    0 |     405 |      516 |        6 |        0 |       0 |     450 |     442 |  0.66 |     6.56 |     6.78 |     0.72 |      0.44 |
|    0 |     406 |      487 |       19 |        0 |       0 |     427 |     417 |  0.67 |     6.53 |     6.64 |     0.7  |      0.46 |
|    0 |     407 |      520 |       47 |        0 |       0 |     469 |     459 |  0.67 |     6.22 |     6.42 |     0.7  |      0.45 |
|    0 |     408 |      481 |       29 |        0 |       0 |     424 |     417 |  0.71 |     7.02 |     7.2  |     0.72 |      0.45 |
|    0 |     409 |      537 |       23 |        0 |       0 |     465 |     458 |  0.64 |     6.63 |     6.94 |     0.7  |      0.49 |
|    0 |     410 |      470 |       33 |        0 |       0 |     424 |     415 |  0.69 |     6.17 |     6.29 |     0.73 |      0.42 |
|    0 |     411 |      534 |       28 |        0 |       0 |     468 |     462 |  0.63 |     6.57 |     6.74 |     0.69 |      0.47 |
|    0 |     412 |      475 |       11 |        0 |       0 |     417 |     413 |  0.65 |     6.49 |     6.53 |     0.72 |      0.43 |
|    0 |     413 |      527 |       50 |        0 |       0 |     477 |     468 |  0.67 |     6.95 |     7.13 |     0.7  |      0.48 |
|    0 |     414 |      488 |       26 |        0 |       0 |     435 |     428 |  0.68 |     7.04 |     7.19 |     0.72 |      0.42 |
|    0 |     415 |      519 |       12 |        0 |       0 |     450 |     447 |  0.66 |     5.65 |     5.79 |     0.71 |      0.45 |
|    0 |     416 |      479 |       49 |        0 |       0 |     438 |     431 |  0.7  |     6.41 |     6.72 |     0.71 |      0.46 |
|    0 |     417 |      527 |       11 |        0 |       0 |     458 |     447 |  0.63 |     5.82 |     6    |     0.7  |      0.49 |
|    0 |     418 |      499 |        5 |        0 |       0 |     439 |     433 |  0.7  |     6.62 |     6.72 |     0.73 |      0.43 |
|    0 |     419 |      524 |       31 |        0 |       0 |     468 |     464 |  0.62 |     5.91 |     5.81 |     0.69 |      0.48 |
|    0 |     420 |      484 |       15 |        0 |       0 |     418 |     411 |  0.72 |     7.19 |     7.34 |     0.73 |      0.43 |
|    0 |     421 |      531 |       13 |        0 |       0 |     454 |     449 |  0.64 |     5.75 |     5.75 |     0.7  |      0.46 |
|    0 |     422 |      487 |       27 |        0 |       0 |     437 |     427 |  0.68 |     6.34 |     6.56 |     0.72 |      0.44 |
|    0 |     423 |      508 |        0 |        0 |       0 |     426 |     423 |  0.7  |     6.63 |     6.69 |     0.7  |      0.45 |
|    0 |     424 |      512 |       19 |        0 |       0 |     445 |     441 |  0.68 |     7.27 |     7.7  |     0.72 |      0.44 |
|    0 |     425 |      482 |       31 |        0 |       0 |     444 |     438 |  0.71 |     6.78 |     7.25 |     0.71 |      0.47 |
|    0 |     426 |      524 |       36 |        0 |       0 |     468 |     461 |  0.68 |     6.62 |     6.72 |     0.72 |      0.45 |
|    0 |     427 |      499 |       17 |        0 |       0 |     444 |     435 |  0.68 |     6.7  |     6.86 |     0.71 |      0.46 |
|    0 |     428 |      492 |       21 |        0 |       0 |     431 |     421 |  0.64 |     6.11 |     6.25 |     0.71 |      0.46 |
|    0 |     429 |      500 |        4 |        0 |       0 |     424 |     416 |  0.69 |     6.51 |     6.66 |     0.72 |      0.45 |
|    0 |     430 |      504 |        6 |        0 |       0 |     438 |     435 |  0.66 |     5.88 |     5.96 |     0.71 |      0.45 |
|    0 |     431 |      527 |       12 |        0 |       0 |     455 |     447 |  0.76 |     8.75 |     9.29 |     0.73 |      0.43 |
|    0 |     432 |      476 |       14 |        0 |       0 |     426 |     421 |  0.62 |     5.96 |     6.02 |     0.71 |      0.44 |
|    0 |     433 |      522 |        9 |        0 |       0 |     454 |     449 |  0.68 |     6.32 |     6.4  |     0.72 |      0.44 |
|    0 |     434 |      510 |       37 |        0 |       0 |     451 |     445 |  0.65 |     5.92 |     6.07 |     0.71 |      0.45 |
|    0 |     435 |      478 |       49 |        0 |       0 |     437 |     433 |  0.62 |     5.37 |     5.51 |     0.7  |      0.47 |
|    0 |     436 |      515 |       18 |        0 |       0 |     458 |     452 |  0.67 |     6.62 |     6.77 |     0.72 |      0.46 |
|    0 |     437 |      490 |       24 |        0 |       0 |     431 |     424 |  0.67 |     6.35 |     6.5  |     0.71 |      0.46 |
|    0 |     438 |      514 |       28 |        0 |       0 |     447 |     438 |  0.65 |     6.34 |     6.4  |     0.71 |      0.44 |
|    0 |     439 |      527 |        7 |        0 |       0 |     464 |     454 |  0.67 |     6.53 |     6.71 |     0.7  |      0.45 |
|    0 |     440 |      497 |       19 |        0 |       0 |     446 |     440 |  0.7  |     6.83 |     6.92 |     0.72 |      0.43 |
|    0 |     441 |      501 |       55 |        0 |       0 |     454 |     446 |  0.7  |     6.58 |     7.04 |     0.71 |      0.48 |
|    0 |     442 |      501 |       22 |        0 |       0 |     445 |     430 |  0.68 |     6.51 |     6.83 |     0.71 |      0.43 |
|    0 |     443 |      505 |        8 |        0 |       0 |     427 |     422 |  0.72 |     6.41 |     6.48 |     0.73 |      0.42 |
|    0 |     444 |      511 |       12 |        0 |       0 |     434 |     429 |  0.68 |     6.84 |     7.46 |     0.72 |      0.46 |
|    0 |     445 |      481 |       22 |        0 |       0 |     413 |     406 |  0.64 |     6.61 |     6.67 |     0.72 |      0.44 |
|    0 |     446 |      502 |       32 |        0 |       0 |     449 |     438 |  0.64 |     5.91 |     6.02 |     0.72 |      0.44 |
|    0 |     447 |      473 |       45 |        0 |       0 |     415 |     411 |  0.62 |     5.94 |     5.93 |     0.71 |      0.44 |
|    0 |     448 |      543 |       16 |        0 |       0 |     483 |     478 |  0.76 |     8.03 |     8.37 |     0.73 |      0.44 |
|    0 |     449 |      490 |       33 |        0 |       0 |     433 |     423 |  0.67 |     5.75 |     5.94 |     0.72 |      0.45 |
|    0 |     450 |      491 |       18 |        0 |       0 |     427 |     423 |  0.73 |     6.87 |     6.99 |     0.72 |      0.42 |
|    0 |     451 |      535 |       25 |        0 |       0 |     459 |     453 |  0.64 |     6.17 |     6.3  |     0.71 |      0.43 |
|    0 |     452 |      509 |       68 |        0 |       0 |     479 |     471 |  0.69 |     6.9  |     7.32 |     0.71 |      0.44 |
|    0 |     453 |      517 |       50 |        0 |       0 |     453 |     447 |  0.57 |     5.16 |     5.26 |     0.7  |      0.44 |
|    0 |     454 |      498 |       20 |        0 |       0 |     451 |     436 |  0.61 |     5.51 |     5.73 |     0.72 |      0.46 |
|    0 |     455 |      508 |       28 |        0 |       0 |     450 |     442 |  0.7  |     6.05 |     6.32 |     0.72 |      0.43 |
|    0 |     456 |      511 |       26 |        0 |       0 |     443 |     431 |  0.68 |     5.99 |     6.19 |     0.72 |      0.45 |
|    0 |     457 |      462 |       21 |        0 |       0 |     397 |     394 |  0.73 |     7.19 |     7.27 |     0.73 |      0.41 |
|    0 |     458 |      534 |       38 |        0 |       0 |     467 |     465 |  0.72 |     7    |     7.5  |     0.73 |      0.43 |
|    0 |     459 |      469 |        8 |        0 |       0 |     406 |     400 |  0.67 |     6.28 |     6.37 |     0.71 |      0.45 |
|    0 |     460 |      462 |       17 |        0 |       0 |     409 |     404 |  0.67 |     6.47 |     6.69 |     0.71 |      0.47 |
|    0 |     461 |      500 |       27 |        0 |       0 |     450 |     443 |  0.65 |     5.88 |     6.37 |     0.72 |      0.44 |
|    0 |     462 |      540 |       31 |        0 |       0 |     460 |     452 |  0.7  |     6.1  |     6.26 |     0.72 |      0.41 |
|    0 |     463 |      536 |       34 |        0 |       0 |     482 |     473 |  0.66 |     6.72 |     7.02 |     0.71 |      0.47 |
|    0 |     464 |      519 |       21 |        0 |       0 |     458 |     450 |  0.65 |     5.98 |     6.12 |     0.71 |      0.43 |
|    0 |     465 |      509 |       23 |        0 |       0 |     456 |     444 |  0.72 |     6.76 |     7.16 |     0.72 |      0.45 |
|    0 |     466 |      509 |       10 |        0 |       0 |     451 |     446 |  0.7  |     7.4  |     7.97 |     0.71 |      0.42 |
|    0 |     467 |      510 |       42 |        0 |       0 |     458 |     451 |  0.64 |     5.9  |     6.42 |     0.71 |      0.46 |
|    0 |     468 |      453 |       12 |        0 |       0 |     384 |     381 |  0.73 |     7.1  |     7.24 |     0.72 |      0.43 |
|    0 |     469 |      555 |       47 |        0 |       0 |     488 |     480 |  0.71 |     6.34 |     6.39 |     0.73 |      0.42 |
|    0 |     470 |      485 |       12 |        0 |       0 |     427 |     421 |  0.74 |     7.34 |     7.62 |     0.73 |      0.43 |
|    0 |     471 |      444 |       14 |        0 |       0 |     396 |     394 |  0.67 |     5.67 |     5.87 |     0.71 |      0.41 |
|    0 |     472 |      503 |       16 |        0 |       0 |     430 |     425 |  0.64 |     6.08 |     6.19 |     0.7  |      0.43 |
|    0 |     473 |      570 |       31 |        0 |       0 |     521 |     511 |  0.67 |     6.53 |     6.97 |     0.72 |      0.44 |
|    0 |     474 |      492 |       21 |        0 |       0 |     439 |     433 |  0.64 |     5.32 |     5.42 |     0.72 |      0.42 |
|    0 |     475 |      532 |        9 |        0 |       0 |     465 |     460 |  0.66 |     6.32 |     6.47 |     0.71 |      0.42 |
|    0 |     476 |      490 |       29 |        0 |       0 |     426 |     417 |  0.7  |     6.62 |     7.17 |     0.72 |      0.46 |
|    0 |     477 |      498 |       32 |        0 |       0 |     431 |     422 |  0.72 |     6.52 |     6.77 |     0.72 |      0.44 |
|    0 |     478 |      495 |       29 |        0 |       0 |     443 |     436 |  0.74 |     7.06 |     7.32 |     0.73 |      0.43 |
|    0 |     479 |      511 |       32 |        0 |       0 |     473 |     462 |  0.76 |     6.9  |     7.44 |     0.72 |      0.45 |
|    0 |     480 |      462 |        9 |        0 |       0 |     409 |     404 |  0.73 |     6.27 |     6.41 |     0.72 |      0.44 |
|    0 |     481 |      493 |       35 |        0 |       0 |     430 |     425 |  0.65 |     5.43 |     5.55 |     0.7  |      0.45 |
|    0 |     482 |      555 |       16 |        0 |       0 |     488 |     485 |  0.73 |     6.07 |     6.28 |     0.71 |      0.46 |
|    0 |     483 |      508 |        7 |        0 |       0 |     424 |     419 |  0.67 |     5.37 |     5.45 |     0.71 |      0.44 |
|    0 |     484 |      508 |       28 |        0 |       0 |     457 |     451 |  0.68 |     6.42 |     6.5  |     0.71 |      0.46 |
|    0 |     485 |      503 |       34 |        0 |       0 |     453 |     442 |  0.77 |     6.56 |     7.08 |     0.72 |      0.43 |
|    0 |     486 |      504 |        7 |        0 |       0 |     441 |     441 |  0.7  |     6.25 |     6.44 |     0.73 |      0.42 |
|    0 |     487 |      504 |       10 |        0 |       0 |     443 |     434 |  0.64 |     5.42 |     5.55 |     0.73 |      0.44 |
|    0 |     488 |      457 |       54 |        0 |       0 |     415 |     412 |  0.72 |     6.39 |     6.4  |     0.71 |      0.47 |
|    0 |     489 |      505 |       14 |        0 |       0 |     439 |     430 |  0.66 |     5.97 |     5.97 |     0.7  |      0.47 |
|    0 |     490 |      508 |       14 |        0 |       0 |     439 |     437 |  0.7  |     5.48 |     5.53 |     0.73 |      0.44 |
|    0 |     491 |      538 |       24 |        0 |       0 |     475 |     467 |  0.73 |     6.62 |     6.98 |     0.71 |      0.45 |
|    0 |     492 |      502 |       11 |        0 |       0 |     435 |     431 |  0.67 |     6.03 |     6.13 |     0.7  |      0.45 |
|    0 |     493 |      500 |       10 |        0 |       0 |     436 |     432 |  0.77 |     7.38 |     7.67 |     0.73 |      0.43 |
|    0 |     494 |      497 |       39 |        0 |       0 |     457 |     446 |  0.71 |     5.86 |     6.06 |     0.73 |      0.45 |
|    0 |     495 |      512 |       33 |        0 |       0 |     459 |     449 |  0.73 |     7.14 |     7.32 |     0.73 |      0.42 |
|    0 |     496 |      471 |       16 |        0 |       0 |     407 |     404 |  0.68 |     5.43 |     5.46 |     0.71 |      0.45 |
|    0 |     497 |      531 |       44 |        0 |       0 |     489 |     483 |  0.71 |     5.84 |     6.11 |     0.71 |      0.45 |
|    0 |     498 |      516 |       44 |        0 |       0 |     451 |     441 |  0.72 |     6.48 |     6.66 |     0.72 |      0.45 |
|    0 |     499 |      493 |       18 |        0 |       0 |     437 |     430 |  0.67 |     5.33 |     5.51 |     0.71 |      0.46 |
|    0 |     500 |      509 |       30 |        0 |       0 |     448 |     438 |  0.72 |     5.96 |     5.91 |     0.7  |      0.47 |
|    0 |     501 |      519 |       16 |        0 |       0 |     461 |     452 |  0.76 |     6.79 |     6.96 |     0.73 |      0.42 |
|    0 |     502 |      489 |        5 |        0 |       0 |     431 |     422 |  0.73 |     5.88 |     6.05 |     0.72 |      0.45 |
|    0 |     503 |      491 |       24 |        0 |       0 |     433 |     428 |  0.73 |     6.75 |     6.97 |     0.71 |      0.47 |
|    0 |     504 |      476 |       15 |        0 |       0 |     418 |     414 |  0.71 |     6.01 |     6.47 |     0.72 |      0.46 |
|    0 |     505 |      547 |        7 |        0 |       0 |     492 |     484 |  0.73 |     6.36 |     6.47 |     0.72 |      0.44 |
|    0 |     506 |      490 |       47 |        0 |       0 |     435 |     426 |  0.71 |     6.78 |     7.06 |     0.71 |      0.46 |
|    0 |     507 |      500 |       11 |        0 |       0 |     436 |     429 |  0.76 |     8.13 |     9.71 |     0.73 |      0.41 |
|    0 |     508 |      535 |       30 |        0 |       0 |     485 |     470 |  0.79 |     6.89 |     7.38 |     0.73 |      0.43 |
|    0 |     509 |      481 |       12 |        0 |       0 |     424 |     416 |  0.76 |     6.42 |     6.6  |     0.72 |      0.45 |
|    0 |     510 |      507 |       32 |        0 |       0 |     460 |     446 |  0.78 |     6.1  |     6.43 |     0.73 |      0.45 |
|    0 |     511 |      484 |       12 |        0 |       0 |     429 |     423 |  0.73 |     5.99 |     6.17 |     0.72 |      0.45 |
|    0 |     512 |      511 |       33 |        0 |       0 |     474 |     466 |  0.72 |     5.32 |     5.84 |     0.71 |      0.43 |
|    0 |     513 |      507 |        0 |        0 |       0 |     433 |     430 |  0.78 |     6.39 |     6.47 |     0.72 |      0.44 |
|    0 |     514 |      533 |        7 |        0 |       0 |     463 |     458 |  0.78 |     6.28 |     6.55 |     0.72 |      0.44 |
|    0 |     515 |      477 |       45 |        0 |       0 |     461 |     454 |  0.76 |     5.98 |     6.24 |     0.73 |      0.44 |
|    0 |     516 |      492 |        5 |        0 |       0 |     422 |     413 |  0.8  |     6.91 |     7.13 |     0.72 |      0.43 |
|    0 |     517 |      521 |       23 |        0 |       0 |     442 |     436 |  0.79 |     6.32 |     6.46 |     0.73 |      0.42 |
|    0 |     518 |      498 |       23 |        0 |       0 |     449 |     440 |  0.8  |     6.95 |     7.39 |     0.73 |      0.44 |
|    0 |     519 |      528 |       19 |        0 |       0 |     478 |     468 |  0.81 |     7    |     7.27 |     0.72 |      0.45 |
|    0 |     520 |      503 |       24 |        0 |       0 |     416 |     409 |  0.79 |     6.77 |     6.9  |     0.73 |      0.41 |
|    0 |     521 |      514 |       22 |        0 |       0 |     442 |     439 |  0.81 |     6.4  |     6.42 |     0.73 |      0.44 |
|    0 |     522 |      479 |       35 |        0 |       0 |     406 |     399 |  0.76 |     6.05 |     6.26 |     0.72 |      0.43 |
|    0 |     523 |      497 |       25 |        0 |       0 |     446 |     438 |  0.78 |     5.79 |     5.86 |     0.73 |      0.42 |
|    0 |     524 |      514 |       25 |        0 |       0 |     456 |     451 |  0.81 |     6.07 |     6.23 |     0.73 |      0.45 |
|    0 |     525 |      514 |       14 |        0 |       0 |     458 |     450 |  0.81 |     5.76 |     5.83 |     0.73 |      0.44 |
|    0 |     526 |      515 |        3 |        0 |       0 |     450 |     444 |  0.79 |     6.53 |     6.75 |     0.73 |      0.44 |
|    0 |     527 |      487 |       15 |        0 |       0 |     428 |     426 |  0.76 |     5.8  |     5.92 |     0.73 |      0.43 |
|    0 |     528 |      497 |       15 |        0 |       0 |     430 |     425 |  0.85 |     6.44 |     6.49 |     0.74 |      0.41 |
|    0 |     529 |      508 |       30 |        0 |       0 |     462 |     458 |  0.86 |     6.91 |     7.15 |     0.73 |      0.43 |
|    0 |     530 |      500 |       43 |        0 |       0 |     462 |     457 |  0.74 |     5.8  |     6.35 |     0.72 |      0.45 |
|    0 |     531 |      506 |       30 |        0 |       0 |     447 |     439 |  0.84 |     6.28 |     6.41 |     0.74 |      0.42 |
|    0 |     532 |      516 |       17 |        0 |       0 |     466 |     461 |  0.87 |     7.27 |     7.82 |     0.74 |      0.41 |
|    0 |     533 |      504 |       34 |        0 |       0 |     457 |     449 |  0.82 |     5.93 |     6.14 |     0.72 |      0.47 |
|    0 |     534 |      478 |       20 |        0 |       0 |     417 |     411 |  0.85 |     7.06 |     7.19 |     0.74 |      0.41 |
|    0 |     535 |      512 |       16 |        0 |       0 |     432 |     425 |  0.82 |     6.6  |     6.67 |     0.74 |      0.43 |
|    0 |     536 |      494 |       27 |        0 |       0 |     453 |     443 |  0.86 |     6.56 |     6.96 |     0.73 |      0.43 |
|    0 |     537 |      508 |       15 |        0 |       0 |     442 |     433 |  0.81 |     6.14 |     6.24 |     0.73 |      0.43 |
|    0 |     538 |      508 |       16 |        0 |       0 |     437 |     432 |  0.8  |     6.29 |     6.57 |     0.74 |      0.42 |
|    0 |     539 |      499 |       21 |        0 |       0 |     442 |     437 |  0.86 |     6.67 |     6.92 |     0.72 |      0.42 |
|    0 |     540 |      499 |        6 |        0 |       0 |     431 |     428 |  0.89 |     6.28 |     6.39 |     0.73 |      0.43 |
|    0 |     541 |      519 |       14 |        0 |       0 |     451 |     449 |  0.87 |     6.38 |     6.32 |     0.74 |      0.41 |
|    0 |     542 |      503 |      152 |        0 |       0 |     463 |     454 |  0.91 |     7.32 |     7.97 |     0.74 |      0.42 |
|    0 |     543 |      492 |       42 |        0 |       0 |     439 |     430 |  0.85 |     5.76 |     6.14 |     0.73 |      0.45 |
|    0 |     544 |      506 |      143 |        0 |       0 |     443 |     438 |  0.9  |     6.79 |     7.17 |     0.74 |      0.42 |
|    0 |     545 |      515 |       19 |        0 |       0 |     451 |     447 |  0.93 |     6.45 |     6.8  |     0.74 |      0.4  |
|    0 |     546 |      485 |       16 |        0 |       0 |     423 |     416 |  0.85 |     5.94 |     6.13 |     0.74 |      0.43 |
|    0 |     547 |      529 |        5 |        0 |       0 |     446 |     442 |  0.89 |     6.7  |     6.85 |     0.74 |      0.42 |
|    0 |     548 |      464 |       39 |        0 |       0 |     420 |     416 |  0.85 |     6.08 |     6.11 |     0.73 |      0.43 |
|    0 |     549 |      506 |       12 |        0 |       0 |     448 |     440 |  0.9  |     6.83 |     6.87 |     0.74 |      0.43 |
|    0 |     550 |      526 |       16 |        0 |       0 |     447 |     440 |  0.95 |     8.42 |     8.73 |     0.75 |      0.39 |
|    0 |     551 |      487 |       53 |        0 |       0 |     459 |     450 |  0.96 |     6.41 |     6.52 |     0.74 |      0.43 |
|    0 |     552 |      534 |       13 |        0 |       0 |     469 |     457 |  0.88 |     6.25 |     6.44 |     0.74 |      0.44 |
|    0 |     553 |      494 |       25 |        0 |       0 |     427 |     417 |  0.89 |     5.98 |     6.13 |     0.75 |      0.41 |
|    0 |     554 |      489 |       24 |        0 |       0 |     439 |     433 |  0.92 |     6.62 |     6.9  |     0.75 |      0.4  |
|    0 |     555 |      518 |        7 |        0 |       0 |     450 |     444 |  1.04 |     8.13 |     8.38 |     0.76 |      0.41 |
|    0 |     556 |      500 |       14 |        0 |       0 |     440 |     435 |  0.98 |     7.19 |     7.46 |     0.75 |      0.42 |
|    0 |     557 |      491 |       33 |        0 |       0 |     432 |     428 |  0.98 |     7.31 |     7.4  |     0.75 |      0.4  |
|    0 |     558 |      508 |       27 |        0 |       0 |     436 |     428 |  0.87 |     6.46 |     6.58 |     0.75 |      0.41 |
|    0 |     559 |      507 |        6 |        0 |       0 |     422 |     419 |  0.95 |     6.74 |     6.82 |     0.75 |      0.42 |
|    0 |     560 |      494 |       33 |        0 |       0 |     460 |     452 |  0.94 |     6.86 |     7    |     0.75 |      0.4  |
|    0 |     561 |      499 |       27 |        0 |       0 |     456 |     449 |  0.97 |     6.6  |     7    |     0.75 |      0.41 |
|    0 |     562 |      529 |       11 |        0 |       0 |     458 |     452 |  1    |     6.71 |     6.79 |     0.76 |      0.4  |
|    0 |     563 |      494 |       33 |        0 |       0 |     440 |     426 |  1.04 |     7.89 |     8.29 |     0.75 |      0.41 |
|    0 |     564 |      498 |        6 |        0 |       0 |     430 |     426 |  0.99 |     6.43 |     6.43 |     0.75 |      0.43 |
|    0 |     565 |      505 |       18 |        0 |       0 |     439 |     432 |  0.99 |     7.08 |     7.75 |     0.75 |      0.41 |
|    0 |     566 |      532 |       17 |        0 |       0 |     472 |     466 |  0.96 |     6.35 |     6.44 |     0.76 |      0.39 |
|    0 |     567 |      459 |       14 |        0 |       0 |     408 |     401 |  1.06 |     7.45 |     7.61 |     0.76 |      0.42 |
|    0 |     568 |      508 |        4 |        0 |       0 |     427 |     420 |  1.01 |     6.79 |     6.89 |     0.76 |      0.4  |
|    0 |     569 |      504 |       15 |        0 |       0 |     435 |     431 |  1.04 |     7.58 |     7.5  |     0.77 |      0.4  |
|    0 |     570 |      526 |       14 |        0 |       0 |     457 |     451 |  1.12 |     8.27 |     8.81 |     0.76 |      0.42 |
|    0 |     571 |      491 |       21 |        0 |       0 |     432 |     421 |  1.05 |     6.6  |     6.76 |     0.76 |      0.44 |
|    0 |     572 |      527 |       15 |        0 |       0 |     453 |     446 |  1.03 |     5.9  |     6.37 |     0.76 |      0.41 |
|    0 |     573 |      493 |       30 |        0 |       0 |     441 |     434 |  1.15 |     7.71 |     8.02 |     0.77 |      0.39 |
|    0 |     574 |      498 |        7 |        0 |       0 |     413 |     406 |  1.03 |     6.05 |     6.18 |     0.76 |      0.42 |
|    0 |     575 |      498 |       26 |        0 |       0 |     445 |     439 |  1.18 |     7.86 |     8.26 |     0.77 |      0.4  |
|    0 |     576 |      492 |       34 |        0 |       0 |     460 |     450 |  1.03 |     6.05 |     6.21 |     0.76 |      0.42 |
|    0 |     577 |      515 |        3 |        0 |       0 |     434 |     430 |  1.13 |     7.19 |     7.4  |     0.77 |      0.38 |
|    0 |     578 |      486 |       33 |        0 |       0 |     433 |     430 |  1.13 |     7.06 |     7.43 |     0.76 |      0.42 |
|    0 |     579 |      528 |       10 |        0 |       0 |     470 |     467 |  1.18 |     6.34 |     6.31 |     0.78 |      0.41 |
|    0 |     580 |      478 |       30 |        0 |       0 |     428 |     421 |  1.05 |     5.86 |     6.04 |     0.76 |      0.42 |
|    0 |     581 |      524 |       27 |        0 |       0 |     477 |     471 |  1.22 |     7.86 |     8.3  |     0.78 |      0.41 |
|    0 |     582 |      494 |       37 |        0 |       0 |     440 |     430 |  1.21 |     8.26 |     8.36 |     0.77 |      0.43 |
|    0 |     583 |      499 |        0 |        0 |       0 |     425 |     417 |  1.17 |     7.45 |     7.58 |     0.78 |      0.39 |
|    0 |     584 |      516 |       27 |        0 |       0 |     458 |     452 |  1.25 |     7.41 |     7.79 |     0.77 |      0.41 |
|    0 |     585 |      497 |       31 |        0 |       0 |     448 |     441 |  1.26 |     7    |     7.13 |     0.78 |      0.42 |
|    0 |     586 |      512 |       19 |        0 |       0 |     440 |     437 |  1.14 |     6.04 |     6.12 |     0.77 |      0.41 |
|    0 |     587 |      490 |       21 |        0 |       0 |     440 |     426 |  1.33 |     8.27 |     8.47 |     0.79 |      0.38 |
|    0 |     588 |      509 |       18 |        0 |       0 |     445 |     441 |  1.21 |     7.68 |     7.75 |     0.78 |      0.38 |
|    0 |     589 |      507 |       10 |        0 |       0 |     442 |     438 |  1.33 |     8.31 |     8.36 |     0.79 |      0.39 |
|    0 |     590 |      498 |       27 |        0 |       0 |     456 |     448 |  1.26 |     7.4  |     7.66 |     0.78 |      0.38 |
|    0 |     591 |      504 |       13 |        0 |       0 |     447 |     443 |  1.25 |     6.45 |     6.59 |     0.79 |      0.41 |
|    0 |     592 |      494 |       10 |        0 |       0 |     433 |     426 |  1.33 |     8.12 |     8.53 |     0.78 |      0.39 |
|    0 |     593 |      516 |       26 |        0 |       0 |     450 |     445 |  1.39 |     8.03 |     8.23 |     0.79 |      0.39 |
|    0 |     594 |      502 |       15 |        0 |       0 |     440 |     430 |  1.24 |     6.69 |     6.88 |     0.79 |      0.4  |
|    0 |     595 |      519 |       21 |        0 |       0 |     457 |     445 |  1.35 |     6.98 |     7.39 |     0.79 |      0.41 |
|    0 |     596 |      480 |       25 |        0 |       0 |     436 |     426 |  1.3  |     6.7  |     7.3  |     0.78 |      0.41 |
|    0 |     597 |      501 |       11 |        0 |       0 |     438 |     433 |  1.48 |     9.59 |     9.77 |     0.8  |      0.39 |
|    0 |     598 |      500 |       17 |        0 |       0 |     444 |     434 |  1.41 |     7.64 |     7.89 |     0.79 |      0.4  |
|    0 |     599 |      507 |       58 |        0 |       0 |     464 |     452 |  1.33 |     5.94 |     6.29 |     0.79 |      0.4  |
|    0 |     600 |      508 |       24 |        0 |       0 |     475 |     468 |  1.32 |     8.21 |     8.83 |     0.79 |      0.39 |
|    0 |     601 |      519 |       27 |        0 |       0 |     472 |     464 |  1.45 |     9.01 |     9.26 |     0.79 |      0.4  |
|    0 |     602 |      478 |       26 |        0 |       0 |     419 |     415 |  1.32 |     8.13 |     8.21 |     0.79 |      0.39 |
|    0 |     603 |      513 |        4 |        0 |       0 |     445 |     439 |  1.57 |     8.96 |     9.16 |     0.8  |      0.38 |
|    0 |     604 |      515 |       25 |        0 |       0 |     439 |     435 |  1.34 |     7.31 |     7.38 |     0.79 |      0.39 |
|    0 |     605 |      499 |       49 |        0 |       0 |     451 |     442 |  1.49 |     6.63 |     6.86 |     0.8  |      0.39 |
|    0 |     606 |      506 |       13 |        0 |       0 |     437 |     428 |  1.37 |     7.26 |     7.57 |     0.79 |      0.41 |
|    0 |     607 |      505 |       17 |        0 |       0 |     438 |     429 |  1.4  |     8.15 |     8.36 |     0.8  |      0.39 |
|    0 |     608 |      484 |       24 |        0 |       0 |     425 |     423 |  1.47 |     8.03 |     8.83 |     0.8  |      0.37 |
|    0 |     609 |      523 |        7 |        0 |       0 |     456 |     448 |  1.51 |     8.08 |     8.4  |     0.8  |      0.4  |
|    0 |     610 |      487 |       12 |        0 |       0 |     437 |     429 |  1.45 |     9.01 |     9.17 |     0.79 |      0.39 |
|    0 |     611 |      522 |       44 |        0 |       0 |     467 |     454 |  1.4  |     7.77 |     8.3  |     0.79 |      0.41 |
|    0 |     612 |      485 |       14 |        0 |       0 |     430 |     421 |  1.27 |     5.95 |     6.14 |     0.79 |      0.4  |
|    0 |     613 |      488 |       31 |        0 |       0 |     435 |     428 |  1.35 |     7.13 |     7.38 |     0.79 |      0.37 |
|    0 |     614 |      515 |       12 |        0 |       0 |     456 |     454 |  1.46 |     8.11 |     8.23 |     0.79 |      0.39 |
|    0 |     615 |      490 |       16 |        0 |       0 |     436 |     426 |  1.38 |     7.02 |     7.19 |     0.79 |      0.37 |
|    0 |     616 |      522 |       32 |        0 |       0 |     455 |     448 |  1.38 |     7.69 |     8.07 |     0.79 |      0.37 |
|    0 |     617 |      510 |       45 |        0 |       0 |     471 |     461 |  1.39 |     7.77 |     8.57 |     0.79 |      0.42 |
|    0 |     618 |      497 |       11 |        0 |       0 |     423 |     417 |  1.37 |     7.59 |     7.94 |     0.79 |      0.38 |
|    0 |     619 |      523 |       13 |        0 |       0 |     461 |     456 |  1.43 |     8.05 |     8.1  |     0.79 |      0.4  |
|    0 |     620 |      496 |       28 |        0 |       0 |     439 |     433 |  1.33 |     7.76 |     7.86 |     0.78 |      0.39 |
|    0 |     621 |      482 |       11 |        0 |       0 |     420 |     410 |  1.36 |     7.13 |     7.35 |     0.79 |      0.41 |
|    0 |     622 |      498 |       19 |        0 |       0 |     436 |     430 |  1.28 |     6.94 |     7.05 |     0.79 |      0.42 |
|    0 |     623 |      507 |       34 |        0 |       0 |     454 |     446 |  1.31 |     7.37 |     7.61 |     0.79 |      0.4  |
|    0 |     624 |      496 |       14 |        0 |       0 |     427 |     422 |  1.34 |     8.51 |     8.78 |     0.79 |      0.39 |
|    0 |     625 |      496 |       26 |        0 |       0 |     449 |     436 |  1.22 |     8.09 |     8.42 |     0.78 |      0.41 |
|    0 |     626 |      515 |       60 |        0 |       0 |     469 |     462 |  1.25 |     6.55 |     7.02 |     0.78 |      0.42 |
|    0 |     627 |      514 |       55 |        0 |       0 |     440 |     433 |  1.4  |     9.11 |     9.26 |     0.79 |      0.38 |
|    0 |     628 |      506 |        9 |        0 |       0 |     439 |     434 |  1.32 |     8.13 |     8.22 |     0.79 |      0.39 |
|    0 |     629 |      496 |       24 |        0 |       0 |     445 |     439 |  1.26 |     8.71 |     9.26 |     0.77 |      0.42 |
|    0 |     630 |      512 |        7 |        0 |       0 |     444 |     436 |  1.29 |     7.43 |     7.59 |     0.78 |      0.4  |
|    0 |     631 |      511 |       24 |        0 |       0 |     437 |     434 |  1.1  |     6.31 |     6.27 |     0.78 |      0.39 |
|    0 |     632 |      506 |       43 |        0 |       0 |     466 |     460 |  1.22 |     9.15 |     9.95 |     0.77 |      0.42 |
|    0 |     633 |      479 |       17 |        0 |       0 |     426 |     419 |  1.16 |     7.85 |     7.98 |     0.77 |      0.41 |
|    0 |     634 |      508 |       10 |        0 |       0 |     442 |     437 |  1.21 |     7.58 |     7.67 |     0.78 |      0.4  |
|    0 |     635 |      477 |       44 |        0 |       0 |     415 |     404 |  1.25 |     9.31 |     9.9  |     0.77 |      0.41 |
|    0 |     636 |      526 |       16 |        0 |       0 |     447 |     440 |  1.12 |     7.18 |     7.21 |     0.77 |      0.42 |
|    0 |     637 |      511 |       10 |        0 |       0 |     458 |     451 |  1.08 |     7.67 |     7.74 |     0.76 |      0.42 |
|    0 |     638 |      481 |       42 |        0 |       0 |     438 |     430 |  1.12 |     7.96 |     8.38 |     0.76 |      0.44 |
|    0 |     639 |      535 |        8 |        0 |       0 |     453 |     444 |  1.12 |     6.8  |     6.91 |     0.76 |      0.42 |
|    0 |     640 |      497 |       54 |        0 |       0 |     462 |     450 |  1.23 |     9.18 |     9.5  |     0.77 |      0.41 |
|    0 |     641 |      467 |       26 |        0 |       0 |     423 |     420 |  1.01 |     7.64 |     7.81 |     0.76 |      0.42 |
|    0 |     642 |      527 |       30 |        0 |       0 |     460 |     453 |  1.02 |     7.56 |     7.62 |     0.75 |      0.44 |
|    0 |     643 |      495 |       18 |        0 |       0 |     420 |     406 |  1.05 |     6.88 |     7.16 |     0.76 |      0.4  |
|    0 |     644 |      515 |       18 |        0 |       0 |     460 |     452 |  1.1  |     6.84 |     7.15 |     0.76 |      0.42 |
|    0 |     645 |      507 |       49 |        0 |       0 |     435 |     429 |  1.14 |     7.22 |     7.38 |     0.77 |      0.4  |
|    0 |     646 |      481 |       18 |        0 |       0 |     424 |     417 |  1.01 |     6.75 |     6.94 |     0.76 |      0.43 |
|    0 |     647 |      521 |       53 |        0 |       0 |     473 |     467 |  1.02 |     7.4  |     7.65 |     0.75 |      0.43 |
|    0 |     648 |      483 |        7 |        0 |       0 |     412 |     407 |  0.99 |     6.82 |     6.86 |     0.75 |      0.42 |
|    0 |     649 |      505 |        4 |        0 |       0 |     443 |     441 |  1.03 |     8.04 |     8.06 |     0.75 |      0.41 |
|    0 |     650 |      487 |       47 |        0 |       0 |     434 |     425 |  1.06 |     7.07 |     7.59 |     0.75 |      0.4  |
|    0 |     651 |      517 |       12 |        0 |       0 |     460 |     454 |  1.03 |     8.08 |     8.14 |     0.76 |      0.41 |
|    0 |     652 |      506 |       20 |        0 |       0 |     442 |     434 |  0.98 |     8.43 |     8.67 |     0.74 |      0.43 |
|    0 |     653 |      501 |       32 |        0 |       0 |     434 |     427 |  1.02 |     7.75 |     8    |     0.76 |      0.41 |
|    0 |     654 |      518 |       27 |        0 |       0 |     458 |     449 |  0.98 |     7.32 |     7.79 |     0.75 |      0.42 |
|    0 |     655 |      487 |       15 |        0 |       0 |     426 |     423 |  0.95 |     6.62 |     6.72 |     0.74 |      0.43 |
|    0 |     656 |      493 |       12 |        0 |       0 |     430 |     426 |  0.95 |     7.05 |     7.08 |     0.74 |      0.42 |
|    0 |     657 |      511 |       23 |        0 |       0 |     446 |     433 |  0.92 |     6.69 |     6.99 |     0.74 |      0.41 |
|    0 |     658 |      512 |       14 |        0 |       0 |     448 |     442 |  0.99 |     7.75 |     7.87 |     0.74 |      0.4  |
|    0 |     659 |      513 |       24 |        0 |       0 |     459 |     450 |  0.98 |     8.72 |     8.9  |     0.75 |      0.43 |
|    0 |     660 |      478 |       20 |        0 |       0 |     413 |     408 |  0.94 |     8.23 |     8.42 |     0.74 |      0.4  |
|    0 |     661 |      527 |       32 |        0 |       0 |     489 |     484 |  0.96 |     8.06 |     8.16 |     0.74 |      0.43 |
|    0 |     662 |      502 |       21 |        0 |       0 |     444 |     438 |  0.82 |     5.29 |     5.44 |     0.73 |      0.41 |
|    0 |     663 |      508 |       19 |        0 |       0 |     453 |     439 |  0.97 |     8.33 |     8.73 |     0.73 |      0.43 |
|    0 |     664 |      481 |       18 |        0 |       0 |     430 |     426 |  0.91 |     7.06 |     7.2  |     0.74 |      0.44 |
|    0 |     665 |      519 |       32 |        0 |       0 |     469 |     460 |  0.96 |     7.02 |     7.33 |     0.74 |      0.42 |
|    0 |     666 |      504 |       18 |        0 |       0 |     447 |     441 |  0.85 |     6.32 |     6.57 |     0.73 |      0.43 |
|    0 |     667 |      505 |       18 |        0 |       0 |     455 |     446 |  0.87 |     6.57 |     6.63 |     0.74 |      0.41 |
|    0 |     668 |      484 |       42 |        0 |       0 |     431 |     418 |  0.97 |     8.18 |     8.56 |     0.74 |      0.45 |
|    0 |     669 |      517 |       17 |        0 |       0 |     450 |     443 |  0.8  |     6.14 |     6.31 |     0.74 |      0.42 |
|    0 |     670 |      511 |       15 |        0 |       0 |     434 |     431 |  0.84 |     6.64 |     6.64 |     0.73 |      0.43 |
|    0 |     671 |      473 |       44 |        0 |       0 |     423 |     417 |  0.92 |     8.18 |     8.39 |     0.73 |      0.43 |
|    0 |     672 |      498 |       48 |        0 |       0 |     456 |     449 |  0.88 |     7.04 |     7.14 |     0.73 |      0.41 |
|    0 |     673 |      534 |       24 |        0 |       0 |     474 |     466 |  0.92 |     7.61 |     7.74 |     0.73 |      0.43 |
|    0 |     674 |      495 |       27 |        0 |       0 |     437 |     429 |  0.87 |     7.75 |     8.61 |     0.74 |      0.42 |
|    0 |     675 |      524 |       31 |        0 |       0 |     470 |     457 |  0.83 |     6.98 |     7.17 |     0.72 |      0.42 |
|    0 |     676 |      490 |       59 |        0 |       0 |     430 |     420 |  0.78 |     7.03 |     7.24 |     0.72 |      0.44 |
|    0 |     677 |      498 |       28 |        0 |       0 |     434 |     430 |  0.88 |     7.7  |     7.87 |     0.73 |      0.42 |
|    0 |     678 |      471 |       14 |        0 |       0 |     404 |     398 |  0.89 |     8.03 |     8.09 |     0.73 |      0.42 |
|    0 |     679 |      537 |       27 |        0 |       0 |     460 |     454 |  0.86 |     7.26 |     7.35 |     0.74 |      0.41 |
|    0 |     680 |      495 |       24 |        0 |       0 |     442 |     438 |  0.87 |     7.02 |     7.29 |     0.73 |      0.42 |
|    0 |     681 |      523 |        9 |        0 |       0 |     451 |     446 |  0.85 |     6.92 |     6.96 |     0.73 |      0.44 |
|    0 |     682 |      470 |       12 |        0 |       0 |     389 |     383 |  0.81 |     7.26 |     7.43 |     0.72 |      0.43 |
|    0 |     683 |      562 |       29 |        0 |       0 |     492 |     484 |  0.75 |     6.71 |     6.95 |     0.71 |      0.46 |
|    0 |     684 |      447 |       13 |        0 |       0 |     397 |     389 |  0.95 |     9.45 |     9.61 |     0.75 |      0.41 |
|    0 |     685 |      517 |       29 |        0 |       0 |     462 |     455 |  0.85 |     7.31 |     7.44 |     0.74 |      0.44 |
|    0 |     686 |      500 |       29 |        0 |       0 |     448 |     442 |  0.86 |     7.35 |     7.66 |     0.73 |      0.43 |
|    0 |     687 |      500 |        9 |        0 |       0 |     423 |     414 |  0.82 |     7.77 |     8.05 |     0.73 |      0.43 |
|    0 |     688 |      498 |        7 |        0 |       0 |     427 |     418 |  0.8  |     7.28 |     7.37 |     0.73 |      0.45 |
|    0 |     689 |      548 |       45 |        0 |       0 |     493 |     477 |  0.77 |     6.59 |     7.42 |     0.7  |      0.48 |
|    0 |     690 |      517 |       26 |        0 |       0 |     461 |     454 |  0.81 |     7.56 |     7.69 |     0.73 |      0.43 |
|    0 |     691 |      453 |       18 |        0 |       0 |     419 |     409 |  0.8  |     6.8  |     6.82 |     0.72 |      0.43 |
|    0 |     692 |      499 |       18 |        0 |       0 |     427 |     421 |  0.8  |     7.02 |     7.19 |     0.72 |      0.44 |
|    0 |     693 |      493 |       21 |        0 |       0 |     445 |     440 |  0.78 |     7.21 |     7.5  |     0.73 |      0.42 |
|    0 |     694 |      524 |       28 |        0 |       0 |     465 |     461 |  0.8  |     7.03 |     7.05 |     0.73 |      0.43 |
|    0 |     695 |      499 |       25 |        0 |       0 |     420 |     416 |  0.75 |     6.91 |     6.95 |     0.72 |      0.43 |
|    0 |     696 |      528 |       17 |        0 |       0 |     475 |     464 |  0.7  |     6.66 |     6.92 |     0.71 |      0.47 |
|    0 |     697 |      503 |       11 |        0 |       0 |     419 |     408 |  0.86 |     7.92 |     8.16 |     0.73 |      0.42 |
|    0 |     698 |      494 |       57 |        0 |       0 |     454 |     451 |  0.79 |     7.01 |     7.51 |     0.71 |      0.45 |
|    0 |     699 |      492 |        8 |        0 |       0 |     423 |     416 |  0.81 |     6.93 |     7.07 |     0.73 |      0.45 |
|    0 |     700 |      481 |       20 |        0 |       0 |     420 |     415 |  0.8  |     7.26 |     7.38 |     0.72 |      0.44 |
|    0 |     701 |      532 |       14 |        0 |       0 |     466 |     457 |  0.79 |     7.16 |     7.38 |     0.73 |      0.45 |
|    0 |     702 |      504 |       27 |        0 |       0 |     474 |     461 |  0.7  |     5.99 |     6.38 |     0.71 |      0.45 |
|    0 |     703 |      517 |       38 |        0 |       0 |     467 |     450 |  0.74 |     6.44 |     6.69 |     0.72 |      0.43 |
|    0 |     704 |      479 |       29 |        0 |       0 |     430 |     422 |  0.73 |     5.95 |     5.98 |     0.72 |      0.43 |
|    0 |     705 |      500 |       22 |        0 |       0 |     437 |     433 |  0.8  |     7.45 |     7.56 |     0.72 |      0.42 |
|    0 |     706 |      488 |       29 |        0 |       0 |     411 |     402 |  0.74 |     6.71 |     6.87 |     0.72 |      0.45 |
|    0 |     707 |      520 |       39 |        0 |       0 |     468 |     461 |  0.76 |     6.73 |     7.69 |     0.71 |      0.46 |
|    0 |     708 |      512 |       29 |        0 |       0 |     458 |     452 |  0.79 |     7.04 |     7.17 |     0.73 |      0.41 |
|    0 |     709 |      512 |       13 |        0 |       0 |     450 |     442 |  0.73 |     7.26 |     7.48 |     0.71 |      0.48 |
|    0 |     710 |      514 |       37 |        0 |       0 |     457 |     448 |  0.72 |     6.33 |     6.65 |     0.71 |      0.47 |
|    0 |     711 |      501 |       11 |        0 |       0 |     434 |     430 |  0.82 |     7.83 |     7.9  |     0.73 |      0.43 |
|    0 |     712 |      494 |       22 |        0 |       0 |     428 |     419 |  0.79 |     7.48 |     7.73 |     0.73 |      0.44 |
|    0 |     713 |      461 |       47 |        0 |       0 |     413 |     409 |  0.74 |     7.47 |     7.67 |     0.73 |      0.41 |
|    0 |     714 |      515 |        7 |        0 |       0 |     453 |     448 |  0.77 |     8    |     8.12 |     0.73 |      0.44 |
|    0 |     715 |      516 |        6 |        0 |       0 |     441 |     435 |  0.7  |     6.26 |     6.32 |     0.72 |      0.44 |
|    0 |     716 |      507 |       30 |        0 |       0 |     461 |     456 |  0.76 |     7.16 |     7.58 |     0.71 |      0.44 |
|    0 |     717 |      536 |       28 |        0 |       0 |     469 |     465 |  0.67 |     6.6  |     6.69 |     0.72 |      0.44 |
|    0 |     718 |      524 |       13 |        0 |       0 |     448 |     448 |  0.74 |     7.13 |     7.11 |     0.72 |      0.44 |
|    0 |     719 |      450 |       23 |        0 |       0 |     401 |     397 |  0.71 |     6.14 |     6.19 |     0.71 |      0.46 |
|    0 |     720 |      272 |      207 |        0 |       0 |     406 |     402 |  0.77 |     7.95 |     8.61 |     0.73 |      0.49 |
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+

 Summary vs resolution
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+
|   ID |   d min |   # full |   # part |   # over |   # ice |   # sum |   # prf |   Ibg |   I/sigI |   I/sigI |   CC prf |   RMSD XY |
|      |         |          |          |          |         |         |         |       |    (sum) |    (prf) |          |           |
|------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------|
|    0 |    1.21 |      381 |        3 |        0 |       0 |     195 |     105 |  0.08 |     0.27 |     0.22 |     0.5  |      0.96 |
|    0 |    1.23 |     1332 |       10 |        0 |       0 |     952 |     777 |  0.09 |     0.26 |     0.2  |     0.51 |      0.92 |
|    0 |    1.25 |     3233 |       22 |        0 |       0 |    2606 |    2241 |  0.1  |     0.27 |     0.23 |     0.52 |      0.87 |
|    0 |    1.28 |     5312 |       39 |        0 |       0 |    4369 |    3991 |  0.12 |     0.32 |     0.28 |     0.53 |      0.8  |
|    0 |    1.3  |     7648 |       51 |        0 |       0 |    6425 |    5990 |  0.13 |     0.41 |     0.36 |     0.55 |      0.74 |
|    0 |    1.33 |    11094 |       74 |        0 |       0 |    9253 |    8730 |  0.15 |     0.46 |     0.42 |     0.56 |      0.69 |
|    0 |    1.36 |    15358 |      132 |        0 |       0 |   12977 |   12300 |  0.18 |     0.54 |     0.47 |     0.58 |      0.63 |
|    0 |    1.4  |    20648 |      635 |        0 |       0 |   18092 |   17423 |  0.21 |     0.63 |     0.57 |     0.6  |      0.6  |
|    0 |    1.43 |    23530 |     1014 |        0 |       0 |   21166 |   20788 |  0.24 |     0.73 |     0.65 |     0.62 |      0.56 |
|    0 |    1.48 |    24115 |     1544 |        0 |       0 |   20982 |   20688 |  0.27 |     0.98 |     0.9  |     0.63 |      0.52 |
|    0 |    1.52 |    24008 |     1494 |        0 |       0 |   21253 |   20980 |  0.31 |     1.25 |     1.17 |     0.66 |      0.48 |
|    0 |    1.58 |    24289 |     1278 |        0 |       0 |   22002 |   21753 |  0.37 |     1.54 |     1.45 |     0.69 |      0.44 |
|    0 |    1.64 |    24398 |     1437 |        0 |       0 |   21731 |   21480 |  0.43 |     1.89 |     1.82 |     0.71 |      0.42 |
|    0 |    1.72 |    24712 |     1496 |        0 |       0 |   21980 |   21723 |  0.52 |     2.65 |     2.59 |     0.75 |      0.39 |
|    0 |    1.81 |    24894 |     1564 |        0 |       0 |   22145 |   21897 |  0.66 |     3.79 |     3.77 |     0.79 |      0.36 |
|    0 |    1.92 |    24741 |     1718 |        0 |       0 |   22348 |   22065 |  0.88 |     5.65 |     5.73 |     0.84 |      0.33 |
|    0 |    2.07 |    25276 |     1518 |        0 |       0 |   22939 |   22665 |  1.14 |     7.94 |     8.17 |     0.86 |      0.32 |
|    0 |    2.28 |    25359 |     1641 |        0 |       0 |   23216 |   22975 |  1.38 |    11.03 |    11.51 |     0.88 |      0.28 |
|    0 |    2.61 |    25776 |     1566 |        0 |       0 |   22999 |   22755 |  2.11 |    17.71 |    18.45 |     0.89 |      0.26 |
|    0 |    3.28 |    25964 |     1601 |        0 |       0 |   23487 |   23211 |  3.57 |    41.07 |    42.92 |     0.87 |      0.25 |
+------+---------+----------+----------+----------+---------+---------+---------+-------+----------+----------+----------+-----------+

 Summary for experiment 0
+---------------------------------------+-----------+----------+--------+
| Item                                  |   Overall |      Low |   High |
|---------------------------------------+-----------+----------+--------|
| dmin                                  |      1.21 |     3.28 |   1.21 |
| dmax                                  |     69.3  |    69.3  |   1.23 |
| number fully recorded                 | 362068    | 25964    | 381    |
| number partially recorded             |  18837    |  1601    |   3    |
| number with invalid background pixels |  97588    |  5426    | 373    |
| number with invalid foreground pixels |  55668    |  3700    | 189    |
| number with overloaded pixels         |      0    |     0    |   0    |
| number in powder rings                |      0    |     0    |   0    |
| number processed with summation       | 321117    | 23487    | 195    |
| number processed with profile fitting | 314537    | 23211    | 105    |
| number failed in background modelling |   1740    |   682    |   0    |
| number failed in summation            |  55668    |  3700    | 189    |
| number failed in profile fitting      |  62248    |  3976    | 279    |
| ibg                                   |      0.87 |     3.57 |   0.08 |
| i/sigi (summation)                    |      6.99 |    41.07 |   0.27 |
| i/sigi (profile fitting)              |      7.25 |    42.92 |   0.22 |
| cc prf                                |      0.74 |     0.87 |   0.5  |
| cc_pearson sum/prf                    |      0.95 |     0.94 |   0.62 |
| cc_spearman sum/prf                   |      0.94 |     0.98 |   0.62 |
+---------------------------------------+-----------+----------+--------+

Timing information for integration
+-------------------+----------------+
| Read time         | 150.38 seconds |
| Extract time      | 3.24 seconds   |
| Pre-process time  | 0.41 seconds   |
| Process time      | 151.35 seconds |
| Post-process time | 0.00 seconds   |
| Total time        | 318.61 seconds |
+-------------------+----------------+

Saving 380905 reflections to integrated.refl
Saving the experiments to integrated.expt

Checking the log output, we see that after loading in the reference reflections from refined.refl, new predictions are made up to the highest resolution at the corner of the detector. This is fine, but if we wanted to we could have adjusted the resolution limits using parameters prediction.d_min and prediction.d_max. The predictions are made using the scan-varying crystal model recorded in refined.expt. This ensures that prediction is made using the smoothly varying lattice and orientation that we determined in the refinement step. As this scan-varying model was determined in advance of integration, each of the integration jobs is independent and we can take advantage of true parallelism during processing.

The profile model is calculated from the reflections in refined.refl. First reflections with a too small ‘zeta’ factor are filtered out. This essentially removes reflections that are too close to the spindle axis. In general these reflections require significant Lorentz corrections and as a result have less trustworthy intensities anyway. From the remaining reflection shoeboxes, the average beam divergence and reflecting range is calculated, providing the two Gaussian width parameters \(\sigma_D\) and \(\sigma_M\) used in the 3D profile model.

Following this, independent integration jobs are set up. These jobs overlap, so reflections are assigned to one or more jobs. What follows are blocks of information specific to each integration job.

After these jobs are finished, the reflections are ‘post-processed’, which includes the application of the LP correction to the intensities. Then summary tables are printed giving quality statistics first by frame, and then by resolution bin.

Symmetry analysis

After integration, further assessments of the crystal symmetry are possible. Previously, we made an assessment of the lattice symmetry (i.e. the symmetry of the diffraction spot positions), however now we have determined a set of intensity values and can investigate the full symmetry of the diffraction pattern (i.e. spot positions and intensities). The symmetry analysis consists of two stages, determining the laue group symmetry and analysing absent reflections to suggest the space group symmetry.

dials.symmetry integrated.expt integrated.refl

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:

input {
  experiments = integrated.expt
  reflections = integrated.refl
}

================================================================================

Performing Laue group analysis

Filtering reflections for dataset 0
Read 380905 predicted reflections
Selected 314537 reflections integrated by profile and summation methods
Combined 5340 partial reflections with other partial reflections
Removed 1156 reflections below partiality threshold
Removed 0 intensity.sum.value reflections with I/Sig(I) < -5
Removed 408 intensity.prf.value reflections with I/Sig(I) < -5
A round of outlier rejection has been performed, 
273 outliers have been identified. 

Patterson group: C 1 2/m 1 (x-y,x+y,z)

--------------------------------------------------------------------------------

Normalising intensities for dataset 1

ML estimate of overall B_cart value:
  14.21, -1.13, -0.70
         14.10, -1.29
                10.94
ML estimate of  -log of scale factor:
  -2.16

--------------------------------------------------------------------------------

Estimation of resolution for Laue group analysis

Resolution estimate from <I>/<σ(I)> > 4.0 : 2.09
Resolution estimate from CC½ > 0.60: 1.41
High resolution limit set to: 1.41
Selecting 153062 reflections with d > 1.41

Input crystal symmetry:
Unit cell: (40.5515, 40.5515, 69.2884, 91.9961, 91.9961, 98.0721)
Space group: P 1 (No. 1)
Change of basis op to minimum cell: a,b,c
Crystal symmetry in minimum cell:
Unit cell: (40.5515, 40.5515, 69.2884, 91.9961, 91.9961, 98.0721)
Space group: P 1 (No. 1)
Lattice point group: C 1 2/m 1 (x-y,x+y,z)

Overall CC for 20000 unrelated pairs: 0.354
Estimated expectation value of true correlation coefficient E(CC) = 0.928
Estimated sd(CC) = 0.716 / sqrt(N)
Estimated E(CC) of true correlation coefficient from identity = 0.961

--------------------------------------------------------------------------------

Scoring individual symmetry elements

+--------------+--------+------+--------+-----+---------------+
|   likelihood |   Z-CC |   CC |      N |     | Operator      |
|--------------+--------+------+--------+-----+---------------|
|        0.929 |   9.92 | 0.99 | 148754 | *** | 1 |(0, 0, 0)  |
|        0.928 |   9.82 | 0.98 | 148156 | *** | 2 |(-1, 1, 0) |
+--------------+--------+------+--------+-----+---------------+

--------------------------------------------------------------------------------

Scoring all possible sub-groups

+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+
| Patterson group   |     |   Likelihood |   NetZcc |   Zcc+ |   Zcc- |   CC |   CC- |   delta | Reindex operator   |
|-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------|
| C 1 2/m 1         | *** |        0.928 |     9.87 |   9.87 |   0    | 0.99 |  0    |       0 | a+b,-a+b,c         |
| P -1              |     |        0.072 |     0.1  |   9.92 |   9.82 | 0.99 |  0.98 |       0 | a,b,c              |
+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+

Best solution: C 1 2/m 1
Unit cell: (53.1698, 61.2427, 69.2884, 90, 93.0456, 90)
Reindex operator: a+b,-a+b,c
Laue group probability: 0.928
Laue group confidence: 0.891

+-------------------+--------------------------+
| Patterson group   | Corresponding MX group   |
|-------------------+--------------------------|
| C 1 2/m 1         | C 1 2 1                  |
+-------------------+--------------------------+
================================================================================

Analysing systematic absences

Laue group: C 1 2/m 1
No absences to check for this laue group

Saving reindexed experiments to symmetrized.expt in space group C 1 2 1
Saving 380905 reindexed reflections to symmetrized.refl

The laue group symmetry is the 3D rotational symmetry of the diffraction pattern plus inversion symmetry (due to Friedel’s law that I(h,k,l) = I(-h,-k,-l) when absorption is negligible). To determine the laue group symmetry, all possible symmetry operations of the lattice are scored by comparing the correlation of reflection intensities that would be equivalent under a given operation. The scores for individual symmetry operations are then combined to score the potential laue groups.

Scoring all possible sub-groups

+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+
| Patterson group   |     |   Likelihood |   NetZcc |   Zcc+ |   Zcc- |   CC |   CC- |   delta | Reindex operator   |
|-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------|
| C 1 2/m 1         | *** |        0.928 |     9.87 |   9.87 |   0    | 0.99 |  0    |       0 | a+b,-a+b,c         |
| P -1              |     |        0.072 |     0.1  |   9.92 |   9.82 | 0.99 |  0.98 |       0 | a,b,c              |
+-------------------+-----+--------------+----------+--------+--------+------+-------+---------+--------------------+

Best solution: C 1 2/m 1
Unit cell: (53.1698, 61.2427, 69.2884, 90, 93.0456, 90)
Reindex operator: a+b,-a+b,c
Laue group probability: 0.928
Laue group confidence: 0.891

+-------------------+--------------------------+
| Patterson group   | Corresponding MX group   |
|-------------------+--------------------------|
| C 1 2/m 1         | C 1 2 1                  |
+-------------------+--------------------------+
================================================================================

Here we see clearly that the best solution is given by C 1 2/m 1, with a high likelihood. For macromolecules, their chirality means that mirror symmetry is not allowed (the ‘m’ in C 1 2/m 1), therefore the determined symmetry relevant for MX at this point is C2. For some laue groups, there are multiple space groups possible due additional translational symmetries (e.g P 2, P 21 for laue group P2/m), which requires an additional analysis of systematic absences. However this is not the case for C 1 2/m 1, therefore the final result of the analysis is the space group C2, in agreement with the result from dials.refine_bravais_settings.

Scaling and Merging

Before the data can be reduced for structure solution, the intensity values must be corrected for experimental effects which occur prior to the reflection being measured on the detector. These primarily include sample illumination/absorption effects and radiation damage, which result in symmetry-equivalent reflections having unequal measured intensities (i.e. a systematic effect in addition to any variance due to counting statistics). Thus the purpose of scaling is to determine a scale factor to apply to each reflection, such that the scaled intensities are representative of the ‘true’ scattering intensity from the contents of the unit cell.

During scaling, a scaling model is created, from which scale factors are calculated for each reflection. Three physically motivated corrections are used to create an scaling model, in a similar manner to that used in the program aimless. This model consists of a smoothly varying scale factor as a function of rotation angle, a smoothly varying B-factor to account for radiation damage as a function of rotation angle and an absorption surface correction, dependent on the direction of the incoming and scattered beam vector relative to the crystal.

dials.scale symmetrized.expt symmetrized.refl

Show/Hide Log

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
DIALS 3.dev.188-g83fbc7986
The following parameters have been modified:
input {
  experiments = symmetrized.expt
  reflections = symmetrized.refl
}

Checking for the existence of a reflection table 
containing multiple datasets 

Found 1 reflection tables & 1 experiments in total.

Dataset ids are: 0 

Space group being used during scaling is C 1 2 1

Scaling models have been initialised for all experiments.

================================================================================

The experiment id for this dataset is 0.
The scaling model type being applied is physical. 

Applying filter of min_isigi > -5.0, partiality > 0.4
Combined 5340 partial reflections with other partial reflections
Excluding 65730/375565 reflections
Reflections passing individual criteria:
criterion: user excluded, reflections: 11506
criterion: excluded for scaling, reflections: 65730

The following corrections will be applied to this dataset: 

+--------------+----------------+
| correction   |   n_parameters |
|--------------+----------------|
| scale        |             26 |
| decay        |             20 |
| absorption   |             24 |
+--------------+----------------+
A round of outlier rejection has been performed, 
8868 outliers have been identified. 

309445 reflections were preselected for scale factor determination 
out of 309835 suitable reflections: 
Reflections passing individual criteria:
criterion: in I/sigma range (I/sig > -5.0), reflections: 309807
criterion: above min partiality ( > 0.95), reflections: 309471

Randomly selected 7765/47935 groups (m>1) to use for scaling model
minimisation (49762 reflections)
Completed preprocessing and initialisation for this dataset.

================================================================================

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with an LBFGS minimizer. 

Time taken for refinement 6.53

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  48331 |  1.2428  |
|      1 |  48331 |  1.2067  |
|      2 |  48331 |  1.1006  |
|      3 |  48331 |  1.0359  |
|      4 |  48331 |  0.92832 |
|      5 |  48331 |  0.89321 |
|      6 |  48331 |  0.87606 |
|      7 |  48331 |  0.8616  |
|      8 |  48331 |  0.85074 |
|      9 |  48331 |  0.84545 |
|     10 |  48331 |  0.84119 |
|     11 |  48331 |  0.83934 |
|     12 |  48331 |  0.83789 |
|     13 |  48331 |  0.83659 |
|     14 |  48331 |  0.83636 |
|     15 |  48331 |  0.83588 |
|     16 |  48331 |  0.83568 |
|     17 |  48331 |  0.8354  |
|     18 |  48331 |  0.83524 |
|     19 |  48331 |  0.83504 |
|     20 |  48331 |  0.83484 |
|     21 |  48331 |  0.83469 |
|     22 |  48331 |  0.83435 |
|     23 |  48331 |  0.83418 |
|     24 |  48331 |  0.83399 |
|     25 |  48331 |  0.83387 |
|     26 |  48331 |  0.83368 |
|     27 |  48331 |  0.83349 |
|     28 |  48331 |  0.83334 |
|     29 |  48331 |  0.83319 |
|     30 |  48331 |  0.83298 |
|     31 |  48331 |  0.8328  |
|     32 |  48331 |  0.83261 |
|     33 |  48331 |  0.83241 |
|     34 |  48331 |  0.83221 |
|     35 |  48331 |  0.83203 |
|     36 |  48331 |  0.83189 |
|     37 |  48331 |  0.83178 |
|     38 |  48331 |  0.83169 |
|     39 |  48331 |  0.83156 |
|     40 |  48331 |  0.83153 |
+--------+--------+----------+
RMSD no longer decreasing
lbfgs minimizer stop: callback_after_step is True

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
868 outliers have been identified. 

Performing profile/summation intensity optimisation.
+----------------+---------+---------+
| Combination    |   CC1/2 |   Rmeas |
|----------------+---------+---------|
| prf only       | 0.99915 | 0.06012 |
| sum only       | 0.99911 | 0.06643 |
| Imid = 277.86  | 0.99921 | 0.05979 |
| Imid = 8162.36 | 0.99918 | 0.06004 |
| Imid = 816.24  | 0.9992  | 0.05967 |
| Imid = 81.62   | 0.99918 | 0.06089 |
+----------------+---------+---------+
Combined intensities with Imid = 816.24 determined to be best for scaling. 

A round of outlier rejection has been performed, 
786 outliers have been identified. 

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with an LBFGS minimizer. 

Time taken for refinement 1.71

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49666 |  0.90607 |
|      1 |  49666 |  0.90398 |
|      2 |  49666 |  0.89775 |
|      3 |  49666 |  0.89649 |
|      4 |  49666 |  0.89503 |
|      5 |  49666 |  0.89391 |
|      6 |  49666 |  0.89375 |
|      7 |  49666 |  0.89364 |
|      8 |  49666 |  0.89356 |
+--------+--------+----------+
RMSD no longer decreasing
lbfgs minimizer stop: callback_after_step is True

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
703 outliers have been identified. 

Performing a round of error model refinement.

Error model details:
  Type: basic
  Parameters: a = 0.76588, b = 0.02602
  Error model formula: σ'² = a²(σ² + (bI)²)
  estimated I/sigma asymptotic limit: 50.187

Results of error model refinement. Uncorrected and corrected variances
of normalised intensity deviations for given intensity ranges. Variances
are expected to be ~1.0 for reliable errors (sigmas).
+--------------------------+----------+------------------------+----------------------+
| Intensity range (<Ih>)   |   n_refl |   Uncorrected variance |   Corrected variance |
|--------------------------+----------+------------------------+----------------------|
| 9947.34 - 1825.94        |      844 |                  3.328 |                0.705 |
| 1825.94 - 1393.24        |      844 |                  3.143 |                0.977 |
| 1393.24 - 1182.53        |      844 |                  3.272 |                1.273 |
| 1182.53 - 907.41         |     1667 |                  2.63  |                1.196 |
| 907.41 - 498.69          |     5642 |                  2.083 |                1.355 |
| 498.69 - 274.06          |     9372 |                  1.427 |                1.358 |
| 274.06 - 150.62          |    14240 |                  0.975 |                1.211 |
| 150.62 - 82.77           |    18921 |                  0.73  |                1.064 |
| 82.77 - 45.49            |    19760 |                  0.561 |                0.891 |
| 45.49 - 24.99            |    12319 |                  0.454 |                0.745 |
+--------------------------+----------+------------------------+----------------------+

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with a Levenberg-Marquardt minimizer.

Time taken for refinement 3.66

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49681 |   1.0145 |
|      1 |  49681 |   1.01   |
|      2 |  49681 |   1.0085 |
|      3 |  49681 |   1.007  |
|      4 |  49681 |   1.0064 |
|      5 |  49681 |   1.0063 |
+--------+--------+----------+
RMSD no longer decreasing

================================================================================

Components to be refined in this cycle for all datasets: scale, decay, absorption
Performing a round of scaling with a Levenberg-Marquardt minimizer.

Time taken for refinement 1.15

Refinement steps:
+--------+--------+----------+
|   Step |   Nref |   RMSD_I |
|        |        |    (a.u) |
|--------+--------+----------|
|      0 |  49681 |   1.0063 |
|      1 |  49681 |   1.0063 |
+--------+--------+----------+
RMSD no longer decreasing

================================================================================

Scale factors determined during minimisation have now been
applied to all reflections for dataset 0.

A round of outlier rejection has been performed, 
260 outliers have been identified. 

Performing a round of error model refinement.

Error model details:
  Type: basic
  Parameters: a = 0.68786, b = 0.03864
  Error model formula: σ'² = a²(σ² + (bI)²)
  estimated I/sigma asymptotic limit: 37.622

Results of error model refinement. Uncorrected and corrected variances
of normalised intensity deviations for given intensity ranges. Variances
are expected to be ~1.0 for reliable errors (sigmas).
+--------------------------+----------+------------------------+----------------------+
| Intensity range (<Ih>)   |   n_refl |   Uncorrected variance |   Corrected variance |
|--------------------------+----------+------------------------+----------------------|
| 9965.07 - 1933.36        |      848 |                  9.026 |                0.928 |
| 1933.36 - 1469.13        |      848 |                  6.386 |                1.046 |
| 1469.13 - 1239.06        |      848 |                  4.764 |                1.065 |
| 1239.06 - 908.38         |     2025 |                  3.792 |                0.978 |
| 908.38 - 499.13          |     5771 |                  2.477 |                1.075 |
| 499.13 - 274.26          |     9409 |                  1.462 |                1.122 |
| 274.26 - 150.70          |    14231 |                  0.961 |                1.129 |
| 150.70 - 82.80           |    18936 |                  0.698 |                1.084 |
| 82.80 - 45.50            |    19641 |                  0.539 |                0.984 |
| 45.50 - 24.99            |    12256 |                  0.445 |                0.868 |
+--------------------------+----------+------------------------+----------------------+


The reflection table variances have been adjusted to account for the
uncertainty in the scaling model

Total time taken: 23.8758s 

================================================================================

38.57% of model parameters have signficant uncertainty
(sigma/abs(parameter) > 0.5)

Summary of dataset partialities
+------------------+----------+
| Partiality (p)   |   n_refl |
|------------------+----------|
| all reflections  |   375565 |
| p > 0.99         |   364594 |
| 0.5 < p < 0.99   |     1606 |
| 0.01 < p < 0.5   |     5072 |
| p < 0.01         |     4293 |
+------------------+----------+

Reflections below a partiality_cutoff of 0.4 are not considered for any
part of the scaling analysis or for the reporting of merging statistics.
Additionally, if applicable, only reflections with a min_partiality > 0.95
were considered for use when refining the scaling model.


            ----------Merging statistics by resolution bin----------           

 d_max  d_min   #obs  #uniq   mult.  %comp       <I>  <I/sI>    r_mrg   r_meas    r_pim   cc1/2   cc_ano
 69.30   3.30  22156   3366    6.58  98.28     544.1    69.5    0.037    0.040    0.015   0.999*   0.293*
  3.30   2.62  21821   3296    6.62  97.20     200.9    47.8    0.049    0.053    0.020   0.998*   0.348*
  2.62   2.29  22159   3242    6.83  96.46     103.0    35.5    0.065    0.070    0.026   0.997*   0.367*
  2.29   2.08  21655   3215    6.74  95.77      70.5    27.0    0.078    0.084    0.032   0.996*   0.235*
  2.08   1.93  21058   3155    6.67  94.89      46.8    20.2    0.096    0.105    0.040   0.994*   0.198*
  1.93   1.81  21245   3172    6.70  94.29      26.6    13.8    0.134    0.145    0.055   0.992*   0.176*
  1.81   1.72  20727   3126    6.63  93.62      16.5     9.6    0.179    0.194    0.074   0.986*   0.157*
  1.72   1.65  20377   3100    6.57  93.07      11.0     6.8    0.232    0.252    0.098   0.968*   0.117*
  1.65   1.58  21159   3098    6.83  92.45       8.9     5.7    0.277    0.300    0.114   0.973*   0.071*
  1.58   1.53  20219   3083    6.56  91.78       6.5     4.3    0.337    0.366    0.141   0.955*   0.064*
  1.53   1.48  19502   3045    6.40  91.58       5.2     3.4    0.411    0.448    0.175   0.940*   0.013
  1.48   1.44  20254   3001    6.75  90.42       3.6     2.5    0.559    0.606    0.232   0.885*   0.051*
  1.44   1.40  18167   2985    6.09  90.02       3.2     2.1    0.636    0.695    0.277   0.857*   0.052*
  1.40   1.37  13678   2476    5.52  73.52       2.6     1.6    0.770    0.852    0.358   0.782*  -0.008
  1.37   1.34   9526   1767    5.39  53.53       2.3     1.4    0.864    0.958    0.403   0.740*   0.007
  1.34   1.31   6634   1292    5.13  38.94       2.1     1.2    0.928    1.032    0.438   0.742*   0.061
  1.31   1.28   4874   1030    4.73  30.42       1.6     0.9    1.248    1.399    0.616   0.591*   0.063
  1.28   1.26   2813    682    4.12  20.75       1.4     0.7    1.484    1.693    0.790   0.396*   0.062
  1.26   1.24   1235    417    2.96  12.68       1.1     0.5    1.948    2.340    1.261   0.331*  -0.044
  1.24   1.21    316    191    1.65   5.69       1.0     0.3    1.574    2.071    1.327   0.405*  -0.451
 69.19   1.21 309575  48739    6.35  72.86      71.2    16.8    0.065    0.071    0.027   0.999*   0.308*



            -------------Summary of merging statistics--------------           

                                             Overall    Low     High
High resolution limit                           1.21    3.30    1.21
Low resolution limit                           69.19   69.30    1.24
Completeness                                   72.9    98.3     5.7
Multiplicity                                    6.4     6.6     1.7
I/sigma                                        16.8    69.5     0.3
Rmerge(I)                                     0.065   0.037   1.574
Rmerge(I+/-)                                  0.056   0.030   1.387
Rmeas(I)                                      0.071   0.040   2.071
Rmeas(I+/-)                                   0.066   0.036   1.962
Rpim(I)                                       0.027   0.015   1.327
Rpim(I+/-)                                    0.035   0.019   1.387
CC half                                       0.999   0.999   0.405
Anomalous completeness                         71.2    98.3     1.5
Anomalous multiplicity                          3.3     3.4     1.3
Anomalous correlation                         0.308   0.293  -0.451
Anomalous slope                               1.088
dF/F                                          0.065
dI/s(dI)                                      1.219
Total observations                           309575   22156     316
Total unique                                  48739    3366     191

Writing html report to dials.scale.html
Saving the scaled experiments to scaled.expt
Saving the scaled reflections to scaled.refl
See dials.github.io/dials_scale_user_guide.html for more info on scaling options

As can be seen from the output text, 70 parameters are used to parameterise the scaling model for this dataset. Outlier rejection is performed at several stages, as outliers have a disproportionately large effect during scaling and can lead to poor scaling results. During scaling, the distribution of the intensity uncertainties are also analysed and a correction is applied based on a prior expectation of the intensity error distribution. At the end of the output, a table and summary of the merging statistics are presented, which give indications of the quality of the scaled dataset:

            ----------Merging statistics by resolution bin----------           

 d_max  d_min   #obs  #uniq   mult.  %comp       <I>  <I/sI>    r_mrg   r_meas    r_pim   cc1/2   cc_ano
 69.30   3.30  22156   3366    6.58  98.28     544.1    69.5    0.037    0.040    0.015   0.999*   0.293*
  3.30   2.62  21821   3296    6.62  97.20     200.9    47.8    0.049    0.053    0.020   0.998*   0.348*
  2.62   2.29  22159   3242    6.83  96.46     103.0    35.5    0.065    0.070    0.026   0.997*   0.367*
  2.29   2.08  21655   3215    6.74  95.77      70.5    27.0    0.078    0.084    0.032   0.996*   0.235*
  2.08   1.93  21058   3155    6.67  94.89      46.8    20.2    0.096    0.105    0.040   0.994*   0.198*
  1.93   1.81  21245   3172    6.70  94.29      26.6    13.8    0.134    0.145    0.055   0.992*   0.176*
  1.81   1.72  20727   3126    6.63  93.62      16.5     9.6    0.179    0.194    0.074   0.986*   0.157*
  1.72   1.65  20377   3100    6.57  93.07      11.0     6.8    0.232    0.252    0.098   0.968*   0.117*
  1.65   1.58  21159   3098    6.83  92.45       8.9     5.7    0.277    0.300    0.114   0.973*   0.071*
  1.58   1.53  20219   3083    6.56  91.78       6.5     4.3    0.337    0.366    0.141   0.955*   0.064*
  1.53   1.48  19502   3045    6.40  91.58       5.2     3.4    0.411    0.448    0.175   0.940*   0.013
  1.48   1.44  20254   3001    6.75  90.42       3.6     2.5    0.559    0.606    0.232   0.885*   0.051*
  1.44   1.40  18167   2985    6.09  90.02       3.2     2.1    0.636    0.695    0.277   0.857*   0.052*
  1.40   1.37  13678   2476    5.52  73.52       2.6     1.6    0.770    0.852    0.358   0.782*  -0.008
  1.37   1.34   9526   1767    5.39  53.53       2.3     1.4    0.864    0.958    0.403   0.740*   0.007
  1.34   1.31   6634   1292    5.13  38.94       2.1     1.2    0.928    1.032    0.438   0.742*   0.061
  1.31   1.28   4874   1030    4.73  30.42       1.6     0.9    1.248    1.399    0.616   0.591*   0.063
  1.28   1.26   2813    682    4.12  20.75       1.4     0.7    1.484    1.693    0.790   0.396*   0.062
  1.26   1.24   1235    417    2.96  12.68       1.1     0.5    1.948    2.340    1.261   0.331*  -0.044
  1.24   1.21    316    191    1.65   5.69       1.0     0.3    1.574    2.071    1.327   0.405*  -0.451
 69.19   1.21 309575  48739    6.35  72.86      71.2    16.8    0.065    0.071    0.027   0.999*   0.308*



            -------------Summary of merging statistics--------------           

                                             Overall    Low     High
High resolution limit                           1.21    3.30    1.21
Low resolution limit                           69.19   69.30    1.24
Completeness                                   72.9    98.3     5.7
Multiplicity                                    6.4     6.6     1.7
I/sigma                                        16.8    69.5     0.3
Rmerge(I)                                     0.065   0.037   1.574
Rmerge(I+/-)                                  0.056   0.030   1.387
Rmeas(I)                                      0.071   0.040   2.071
Rmeas(I+/-)                                   0.066   0.036   1.962
Rpim(I)                                       0.027   0.015   1.327
Rpim(I+/-)                                    0.035   0.019   1.387
CC half                                       0.999   0.999   0.405
Anomalous completeness                         71.2    98.3     1.5
Anomalous multiplicity                          3.3     3.4     1.3
Anomalous correlation                         0.308   0.293  -0.451
Anomalous slope                               1.088
dF/F                                          0.065
dI/s(dI)                                      1.219
Total observations                           309575   22156     316
Total unique                                  48739    3366     191

Looking at the resolution-dependent merging statistics, we can see that the completeness falls significantly beyond 1.4 Angstrom resolution. If desired, a resolution cutoff can be applied and the data rescaled (using the output of the previous scaling run as input to the next run to load the existing state of the scaling model):

dials.scale scaled.expt scaled.refl d_min=1.4

The merging statistics, as well as a number of scaling and merging plots, are output into a html report called dials.scale.html. This can be opened in your browser - nativigate to the section “scaling model plots” and take a look. What is immediately apparent is the periodic nature of the scale term, with peaks and troughs 90° apart. This indicates that the illuminated volume was changing significantly during the experiment: a reflection would be measured as almost twice as intense if it was measured at rotation angle of ~120° compared to at ~210°. The absorption surface also shows a similar periodicity, as may be expected. The relative B-factor shows low overall variation, suggesting little overall radiation damage.

Once we are happy with the dataset quality, the final step of dials processing is to merge the data and produce a merged mtz file, suitable for input to downstream structure solution. To do this we can use the command:

dials.merge scaled.expt scaled.refl

The log output reports intensity statistics, the symmetry equivalent reflections are merged and a truncation procedure is performed, to give strictly positive merged structure factors (Fs) in addition to merged intensities.

HTML report

Much more information from the various steps of data processing can be found within an HTML report generated using the program dials.report. This is run simply with:

dials.report scaled.expt scaled.refl

which produces the file dials.report.html.

This report includes plots showing the scan-varying crystal orientation and unit cell parameters. The latter of these is useful to check that changes to the cell during processing appear reasonable. We can at least see from this and the low final refined RMSDs that this is a very well- behaved dataset.

Some of the most useful plots are

  • Difference between observed and calculated centroids vs phi, which shows how the average residuals in each of X, Y, and φ vary as a fuction of φ. If scan-varying refinement has been successful in capturing the real changes during the scan then we would expect these plots to be straight lines.

  • Centroid residuals in X and Y, in which the X, Y residuals are shown directly. The key point here is to look for a globular shape centred at the origin.

  • Difference between observed and calculated centroids in X and Y, which show the difference between predicted and observed reflection positions in either X or Y as functions of detector position. From these plots it is very easy to see whole tiles that are worse than their neighbours, and whether those tiles might be simply shifted or slightly rotated compared to the model detector.

  • Reflection and reference correlations binned in X/Y. These are useful companions to the plots of centroid residual as a function of detector position above. Whereas the above plots show systematic errors in the positions and orientations of tiles of a multi-panel detector, these plots indicate what effect that (and any other position-specific systematic error) has on the integrated data quality. The first of these plots shows the correlation between reflections and their reference profiles for all reflections in the dataset. The second shows only the correlations between the strong reference reflections and their profiles (thus these are expected to be higher and do not extend to such high resolution).

  • Distribution of I/Sigma vs Z. This reproduces the \(\frac{I}{\sigma_I}\) information versus frame number given in the log file in a graphical form. Here we see that \(\frac{I}{\sigma_I}\) is fairly flat over the whole dataset, which we might use as an indication that there were no bad frames, not much radiation damage occurred and that scale factors are likely to be fairly uniform.

Exporting to unmerged MTZ

It is possible that an unmerged mtz file is desired for further processing before merging. To produce a scaled unmerged mtz file, one can use the dials.export command on the scaled datafiles:

dials.export scaled.refl scaled.expt

It is also possible to export the integrated (unscaled) data in mtz format using dials.export. If you have an installation of CCP4, symmetry analysis and scaling can then be continued with the ccp4 programs pointless, aimless and ctruncate to generate a merged mtz file:

dials.export integrated.refl integrated.expt
pointless hklin integrated.mtz hklout sorted.mtz > pointless.log
aimless hklin sorted.mtz hklout scaled.mtz > aimless.log << EOF
resolution 1.4
anomalous off
EOF
ctruncate -hklin scaled.mtz -hklout truncated.mtz \
-colin '/*/*/[IMEAN,SIGIMEAN]' > ctruncate.log